834. Sum of Distances in Tree [Hard]

https://leetcode.com/problems/sum-of-distances-in-tree/

An undirected, connected tree with N nodes labelled 0...N-1 and N-1 edges are given.

The ith edge connects nodes edges[i][0] and edges[i][1] together.

Return a list ans, where ans[i] is the sum of the distances between node i and all other nodes.

Example 1:

Input: N = 6, edges = [[0,1],[0,2],[2,3],[2,4],[2,5]]
Output: [8,12,6,10,10,10]
Explanation: 
Here is a diagram of the given tree:
  0
 / \
1   2
   /|\
  3 4 5
We can see that dist(0,1) + dist(0,2) + dist(0,3) + dist(0,4) + dist(0,5)
equals 1 + 1 + 2 + 2 + 2 = 8.  Hence, answer[0] = 8, and so on.

Note: 1 <= N <= 10000


算法思路:

相当巧妙,自己也知道有大量重复计算,辅助数组也想到了,但不知如何利用edges进行计算,特殊例子可以到处,但没有推出具体的一般的迭代公式。

难点:

  • 地图的转换,将边的信息转换成广义邻接表
  • 对于父子关系,通过parent进行控制,避免parent -> cur -> parent 环的形成,也避免实际建树操作
  • 相邻点的答案依赖关系,先从任意一个点开始,比如0,求出它的答案,然后求其child答案,然后继续向下dfs
  • 依赖关系的推到借助于count数组,可以画一个一般情况,然后推出公示

solution

Tree diagram illustrating recurrence for ans[child]

Then, as illustrated in the diagram, the answer for xx in the entire tree, is the answer of xx on XX "x@X", plus the answer of yy on YY "y@Y", plus the number of nodes in YY "#(Y)". The last part "#(Y)" is specifically because for any node z in Ydist(x, z) = dist(y, z) + 1.

By similar reasoning, the answer for yy in the entire tree is ans[y] = x@X + y@Y + #(X). Hence, for neighboring nodes xx and yy, ans[x] - ans[y] = #(Y) - #(X), so if we konw ans[y], ans[x] = ans[y] + #(Y) - #(X).

Tree diagram illustrating recurrence for ans[child]

See this diagram above, in dfs we can just transfer from parent to child,so count[child] is the count number of its and its subtrees,similarly count[parent] is the count number of its and its subtrees,but as we can see above, count[parent] include count[child],so we cannot just use count[parent] to represent right count of numbers, use N - count[child] to solve it(it is great!).

Here is the c++ code.

class Solution {
public:
    vector<int> sumOfDistancesInTree(int N, vector<vector<int>>& edges) {
        vector<vector<int>> g(N);
        for (int i = 0, len = edges.size(); i < len; i++) {
            g[edges[i][0]].push_back(edges[i][1]);
            g[edges[i][1]].push_back(edges[i][0]);
        }
        // 包含自己和子树的节点数,初始只包含自己,记为1
        vector<int> count(N, 1);
        vector<int> res(N);
        // 计算count数组和res[0]答案
        dfs(0, -1, count, g, res);
        // 重新更新计算其他答案
        dfs2(0, -1, count, g, N, res);
        return res;
    }
private:
    void dfs(int cur, int parent, vector<int>& count, 
             vector<vector<int>>& g, vector<int>& res) {
        for (int child : g[cur]) {
            if (child != parent) {
                dfs(child, cur, count, g, res);
                count[cur] += count[child];
                res[cur] += res[child] + count[child];
            }
            
        }
    }
    
    void dfs2(int cur, int parent, vector<int>& count, 
              vector<vector<int>>& g, const int& N, vector<int>& res) {
        for (int child : g[cur]) {
            if (child != parent) {
                // 基于cur,外部比child多的节点数,就是多的距离值
                res[child] = res[cur] + (N - count[child]) - count[child]; 
                dfs2(child, cur, count, g, N, res);
            }
        }
    } 
};

参考资料:

https://leetcode.com/problems/sum-of-distances-in-tree/solution/

https://www.bilibili.com/video/BV144411V7xJ?from=search&seid=5612043016635587201

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值