多项式分布是二项式分布的推广。
在二项分布这篇文章中我们曾以抛硬币举例:在一次抛硬币实验中结果只有两种情况,正面或反面向上;在 n n n 次抛硬币实验中,正面向上出现 k k k 次的有 C n k = n ! k ! ( n − k ) ! C_{n}^k={n!\over{k!(n-k)!}} Cnk=k!(n−k)!n! 种可能,概率表示为:
P ( X = k ) = ( n k ) p k ( 1 − p ) n − k P(X=k)=\binom{n}{k}p^k(1-p)^{n-k} P(X=k)=(kn)pk(1−p)n−k
其中, k = 0 , 1 , . . . , n , ( n k ) = C n k = n ! k ! ( n − k ) ! k=0,1,...,n \ , \ \binom{n}{k}=C_{n}^k={n!\over{k!(n-k)!}} k=0,1,...,n , (kn)=Cnk=k!(n−k)!n!
如果在一次实验中,可能出现的结果不像硬币那样只有两种情况,比如掷一次骰子就可能出现六种结果。
假设掷了n次骰子,记 X 1 、 X 2 、 . . . 、 X 6 X_1 \ 、X_2 \ 、... 、 X_6 X1 、X2 、...、X6 分别表示每次掷骰子的点数1到6;
记n次中点数1出现的次数为 x 1 x_1 x1,点数为2出现的次数为 x 2 x_2 x2,以此类推,则点数为1到6出现的次数为 x i x_i xi ( i = 1 , 2 , . . . 6 ) (i=1,2,...6) (i=1,2,...6) ,且 x 1 + x 2 + . . . + x 6 = n x_1+x_2+...+x_6=n x1+x2+...+x6=n ;
记n次中点数1出现 x 1 x_1 x1 次的概率为 p i p_i

文章介绍了二项分布的基础上,探讨了多项式分布的概念,即当随机变量的结果可能有多种且独立出现时的概率计算方法,涉及期望和方差的计算。
最低0.47元/天 解锁文章
2675

被折叠的 条评论
为什么被折叠?



