Multinomial Distribution(多项式分布)

多项式分布是二项式分布的推广,允许每次试验有多于两种可能的结果。在多项式分布中,每个独立试验有k种互斥的可能结果,每种结果发生的概率分别为p_1, p_2, ..., p_k,且这些概率之和为1。随机变量X_i表示第i种结果发生的次数,它们满足0到n的约束条件,即所有结果的次数总和等于n。每个X_i单独看都有一个二项式分布,其期望和方差分别为E(X_i)=npi和Var(X_i)=npi(1-p_i)。举例来说,在美国的血型分布中,抽取10人的样本中,可以使用多项式分布来计算特定血型组合的概率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The multinomial distribution is a generalization of the binomial distribution.

In the binomial distribution there are only two possible outcomes on any one individual trial, and we labeled those success and failure. In the multinomial distribution, the number of possible outcomes on any one given trial is allowed to be greater than 2.

Suppose

  • There are n independent trials.
  • Each trial results in 1 of k mutually exclusive outcomes.
  • On any single trial these k outcomes comes occur with probabilities p_1, p_2 … p_k.

∑ i = 1 k p i = 1 \sum_{i=1}^{k}{p_{i}}=1 i=1kpi=1

Then

let the random variable X_i represent the number of occurrences of outcome of i.(让随机变量X_i表示i的结果的出现次数。)And i is going to take on the values 1 through k, representing those k possible outcomes on any one individual trial.(i的值为1到k,代表每次独立实验会出现的k种不同的结果。)
So we’re going to have k random variables, representing a count for each of those possible outcomes.
P ( X 1 = x 1 , ⋅ ⋅ ⋅ , X k = x k ) = n ! x 1 ! ⋅ ⋅ ⋅ x k ! p 1 x 1 ⋅ ⋅ ⋅ p k x k P(X_{1}=x_{1},\cdot \cdot \cdot ,X_{k}=x_{k})=\frac{n!}{x_{1}!\cdot \cdot \cdot x_{k}!}p_{1}^{x_{1}}\cdot \cdot \cdot p_{k}^{x_{k}} P(X1=x1,,Xk=xk)=x1!xk!n!p1x1pkxk
p_i represent the probability of outcome i on any one individual trial
x_i represent the occurrences of outcome i within n individual trials
The random variable X_i can take on the possible values 0, 1, 2, …, n, and we know that n things must happen in total. So:
∑ i = 1 k x i = n \sum_{i=1}^{k}{x_{i}}=n i=1kxi=n
And if we think about this a little bit, any one of these random variables, when viewed individually, it will have a binomial distribution. And if you remember our mean and variance for the binomial distribution:
E ( X i ) = n p i V a r ( X i ) = n p i ( 1 − p i ) E(X_{i})=np_{i}\\ Var(X_{i})=np_{i}(1-p_{i}) E(Xi)=npiVar(Xi)=npi(1pi)

Example

This is approximately the distribution of blood types in the United States.

TypeOABAB
Probability0.440.420.100.04

In a random sample of 10 Americans what is the probability 6 have blood type O, 2 have type A, 1 has type B, and 1 has type AB?
When any one individual person is sampled, they’re going to have one of these four blood types, according to these probabilities. And we’re going to be able to answer this question using the multinomial distribution.
P ( X 1 = 6 , X 2 = 2 , X 3 = 1 , X 4 = 1 ) = 10 ! 6 ! 2 ! 1 ! 1 ! 0.4 4 6 0.4 2 2 0.1 0 1 0.0 4 1 P(X_{1}=6, X_{2}=2 , X_{3}=1 , X_{4}=1)=\frac{10!}{6! 2! 1! 1!}0.44^{6}0.42^{2}0.10^{1}0.04^{1} P(X1=6,X2=2,X3=1,X4=1)=6!2!1!1!10!0.4460.4220.1010.041

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值