Biological Psychiatry:真实世界数据如何促进精神病学精准医学治疗的发展

摘要:精准医学旨在通过患者分层来改善治疗反应和临床结果,并且在治疗精神障碍方面具有巨大潜力。然而,需要几个重要因素才能将当前的实践转变为精确的精神病学框架。最重要的是 1)生成可访问的大型真实世界训练和测试数据,包括从多个来源集成的基因组数据,2)开发和验证用于分层和预测的高级分析工具,以及 3)开发临床上有用的患者监测管理平台,这些平台可以集成到医疗保健中现实生活中的系统。本综述总结了获取关键要素的策略——使用新颖的人工智能算法从大型生物样本库中获得与电子健康记录和健康登记数据相结合的有力样本——以预测严重精神障碍的结果并将这些模型转化为临床管理和治疗方法。关键要素是海量心理健康数据和新颖的人工智能算法。对于这些策略的临床转化,我们讨论了一个改善精神障碍管理的精准医学平台。我们用案例来说明如何将精准医学干预引入精神病学,以改善精神障碍的临床结果。

1. 引言

精神障碍是慢性病、残疾、发病率和死亡率的主要原因之一,是世界范围内的重大公共卫生问题。据报道,患有严重和持久的精神疾病的人,通常在儿童期或青少年期发病,与一般人群相比,预期寿命缩短了 10 至 20 年。死亡率增加的主要原因是合并症,包括额外的精神病诊断和躯体疾病,如 2 型糖尿病、高血压、心血管和呼吸系统疾病,以及物质使用和自杀。

精神病学的一个根本挑战是精神病和情感症状的治疗,这是严重精神障碍精神分裂症 (SCZ)、双相情感障碍和重度抑郁症(MDD)的核心特征。虽然目前治疗精神病症状和情绪改变的药物对大多数患者有效,但疗效和不良反应存在很大差异。对这些药物无反应是一个重要的临床问题,SCZ的失败率约为 30%,双相情感障碍和 MDD的失败率相似。在精神药物试验 ≥2 后症状没有有意义改善的个体(假设剂量和持续时间足够)通常被定义为对治疗有抵抗力。然而,在确定与精神药理学治疗反应相关的因素方面,一个重大挑战是精神疾病的高度临床和生物学异质性。此外,心脏代谢改变等不良反应很常见,并且经常导致不依从性。精神病学中广泛的多药治疗增加了额外的复杂性,增加了药物相互作用和不良反应的风险。精神药物治疗通常涉及一种试错法来平衡治疗效果和不良反应。

精准医学是一种治疗和预防方法,旨在开发和验证用于治疗分层的临床预测模型。对于精神药理学,精准医学的目标是通过考虑基因、环境和生活方式的个体变异性来指导精神药理学治疗。精神病遗传学和药物基因组学的进展将通过根据患者的遗传谱优化现有药物的使用,为改善治疗结果创造巨大的机会。虽然基因组学的应用对于未来的精准精神病学至关重要,但预计基因组因素与环境因素(如社会经济地位、教育、营养和不良生活事件)一起促进疾病结果。因此,有必要在预测模型中包括环境暴露以及非遗传生物标志物和标准临床数据,以提高基因组信息的预测价值。然而,开发和验证精准治疗所需的相关数据集直到最近才可用。欧洲药品管理局 (European Medicines Agency) 将真实世界数据 (RWD) 定义为未在随机临床试验 (RCT) 中收集的任何类型的数据。美国食品和药物管理局将 RWD 定义为“从各种来源定期收集的与患者健康状况和/或医疗保健提供相关的数据”。RWD 提供了一个独特的机会,可以获得具有足够统计能力的大型数据集,以利用新颖的分析方法。这将使预测和分层工具的开发成为可能,这些工具具有转化为临床有用的决策支持工具,用于精神病学的精确治疗。

本叙述性综述的目的是总结将精准医学干预引入精神病学所需的重要因素。这些研究的基石是使用从常规临床评估中收集的 RWD,这仍然是一个未被充分开发的信息来源,它为获得可以为基础和应用研究计划提供支持的海量数据集提供了独特的机会。如图 1 所示,通过整合来自医疗保健系统和生物样本库的 RWD 来生成大型训练和测试数据,开发用于分层和预测的先进人工智能工具,最后开发用于患者临床监测的管理平台,都需要将精准精神病学干预从基础科学转化为临床实践。 

图片

图1 将多个大型真实世界数据源和预测算法集成到临床管理平台中,以实现精准治疗和改善精神病学的结局。电子健康、电子健康记录。

2. 方法

这是一篇叙述性综述,重点介绍 RWD、遗传信息和预测工具在精准精神病学中的应用。PubMed 用于识别有关“精准精神病学”、“遗传学和精准精神病学”、“真实世界数据和精准精神病学”、“预测模型和精准精神病学”、“电子健康记录和精准精神病学”和“治疗分层和精神病学”的文章(截至 2023 年 8 月 1 日)。我们检索了文献以定性评估其与当前目标的相关性,并根据写作团队的专业知识选择了论文。

3. RWD 源

临床信息的深度表型数据,包括合并症和精神药物治疗结果数据,对于精神障碍临床结果的分层和预测至关重要,但此类数据很难在大型、同质的规模上获得。来自健康登记处和医院记录/电子健康记录 (eHR) 的结构化和精选 RWD,与生物样本库的基因型数据相关联,以及大规模治疗药物监测数据库或严重精神疾病个体的其他大型临床样本,可以提供此类数据和所需的样本量,从而具有发现遗传因素的足够能力与精神障碍的治疗结果相关。全国范围内的处方记录提供了对个体治疗结果的见解,这些结果可以从例如药物的持续时间以及类型和剂量的变化中推断出来。这些代理表型可用于估计治疗反应。北欧地区,即丹麦、爱沙尼亚、芬兰、冰岛、挪威和瑞典,提供了大量基于人群的基因分型队列,其纵向数据对精准医学很有价值。此类队列的示例包括 iPSYCH 项目 (http://www.ipsych.au.dk/)、爱沙尼亚生物样本库 (http://www.biobank.ee/)、FinnGen 项目 (https://www.finngen.fi/)、deCODE 遗传学 (http://www.decode.com) 和 MoBa(挪威母婴队列研究)(http://www.fhi.no/MoBa),所有这些都与药物处方数据和/或自我报告的药物使用和相关治疗反应以及与精准精神病学相关的注册数据相关联。

将来自生物样本库的现有基因组学数据与这些 RWD 集合相结合,克服了来自 RCT 的数据的局限性,其中患有多种疾病的患者被排除在外,因为他们通常需要多种药物(多药治疗),因此发生不良反应的风险更大。此外,RCT 的治疗依从性优于真实世界。多项研究显示,RWD(例如来自电子健康纪录的数据)可用于识别在 MDD或 SCZ中处于治疗耐药风险的个体。治疗反应或耐药性的代理已从处方登记处定义,自然语言处理已被用于改进 eHR 衍生的治疗反应定义。在一项关于抗精神病药物治疗停止的荟萃分析中,已经证明真实世界研究和 RCT 的结果具有良好的一致性。最近的一项研究表明,可以使用初级保健 eHR 可靠地定义难治性抑郁症,并用于评估难治性抑郁症的遗传、临床和人口统计学特征。然而,尽管电子健康纪录可能有助于对治疗耐药性的风险进行分层,但来自电子健康纪录的数据具有高度的可变性和混杂性,因此需要仔细管理和验证。为了将来自多个来源的 RWD 信息进行综合分析,RWD 需要满足与治疗效果和不良反应相关的措施的必要质量。需要进一步的质量控制来协调从登记处和生物库、医疗健康记录、精神障碍队列的大型临床研究数据以及访谈或问卷中收集的不同类型的 RWD 的数据协调。要将 RWD 应用于精准精神病学,必须评估数据质量,并且必须使用额外的措施和外部验证进一步改进模型,以评估它们在真实临床环境中的性能。

4. 治疗结果的基因组发现

根据双胞胎研究估计,严重精神障碍是具有高遗传性(40% 至 80%)的复杂慢性病。基因分型技术的最新进展导致在人类基因组中发现了数百个区域,这些区域隐藏着从全基因组关联研究 (GWAS) 中鉴定出的精神特征的风险变异。精神障碍及其合并症都是高度多基因的,这意味着它们受到许多基因的影响,每个基因变异对疾病有很小的影响。然而,总的来说,它们解释了表型变异的很大一部分。多基因风险评分(PRS)可用于研究疾病相关单核苷酸多态性的累积效应,并可能有助于评估疾病风险。然而,精神病学 PRS 的预测能力仍然不足以实现临床效用。随着 GWAS 的扩大、表型的改进和技术的改进,PRS 的预测性能可能会在未来几年得到改善,并且 PRS 可能在未来成为临床精神病学的一部分。

新出现的证据表明,对精神药物的反应也可能具有遗传成分。药物基因组学研究调查遗传变异如何影响药物代谢(药代动力学)或药物的分子、生化和生理效应(药效学)和相关不良反应,目的是指导药物处方以改善治疗反应并减少副作用。几项研究表明,在开始药物治疗前进行药物基因组学检测可以改善特定药物-基因组合的患者预后。然而,药物基因组学信息在临床精神病学中并未得到广泛使用,主要是由于缺乏关于心理健康状况治疗效用的证据。此外,在精神药物遗传学研究中鉴定和验证的大多数遗传标记与药代动力学的变异性有关,特别是由 CYP2D6 和 CYP2C19 介导的药物代谢,而关于遗传变异如何影响精神药物的药效学仍然很弱。因此,为了为精神药物的精准治疗提供药物遗传学基础,需要进行大规模研究来发现显着影响精神障碍药物治疗结果的遗传变异。

了解与治疗效果和不良反应相关的常见和罕见变异可能对治疗分层非常有用,但对药物治疗结果的遗传学知之甚少,因此难以预测药物反应。此外,表型的多基因性程度会影响 GWAS 的功效。鉴于精神药物治疗结果是多基因的,基因发现需要大量样本。具有基因型和纵向治疗结果数据的大型 RWD 样本可以识别与精神药物的反应和不良反应相关的遗传因素。在当前的精神药物遗传学研究中,由于样本量不足以及定义治疗相关表型的可变性,对遗传关联的稳健鉴定受到限制。对于抗抑郁药反应,迄今为止尚未检测到稳健复制的关联。使用抑郁症状评分测量的抗抑郁药反应的最大 GWAS (N = 5151) 没有发现任何全基因组显着位点,这可能是由于其样本量有限。在难治性 SCZ (TRS)的 GWAS 中,包括世界上最大的抗精神病药物无反应者样本,未发现全基因组显著位点。由 ConLiGen进行的最大的锂反应 GWAS确定了 1 个可复制基因座。虽然 ConLiGen 样本量甚至小于 TRS和抗抑郁药反应的 GWAS,但对特定药物(即锂)的反应可能比其他治疗表型更有力地评估。

虽然目前关于精神药物治疗结果的 GWAS 尚未产生可整合到治疗结果分层和预测中的基因组预测因子,但来自英国和挪威氯氮平诊所的数据已被用于进行分析,将 SCZ 的基因组易感性与抗精神病药物剂量联系起来,这表明 SCZ 基因组风险高的个体不太可能对氯氮平产生反应标准剂量治疗。瑞典的一项研究表明,使用临床和基因组数据可以改善锂剂量预测。此外,SCZ 和 MDD 的 PRS 已被用于预测锂反应,当使用交叉验证的机器学习回归方法将 PRS 与临床数据相结合时,预测效果得到了改善。这些见解支持将基因组信息与临床数据相结合的研究策略,以优化精神病学的治疗结果预测。

5. 大数据工具开发

为了将精神病治疗转变为精准医疗,一个主要挑战是使多个数据源和模式可用于训练新的预测算法。

识别和协调表型数据是迈向精准医疗的关键第一步。Tryggve 基础设施 (http://www.neic.no/tryggve) 在北欧国家开发了一种分布式数据分析解决方案,该解决方案建立在协调数据库和容器解决方案的基础上,用于利用大型敏感数据收集进行安全高效的跨国健康研究。容器技术提供了符合《通用数据保护条例》的存储、共享和分析基因组数据的平台,来自不同国家和跨项目的用户可以使用该平台进行基因组数据分析。大数据分析工具,例如使用人工智能算法从 eHR 中提取数据的自然语言处理,以及用于捕获表型轨迹的序列分析,可以扩展到包括全国性的处方记录。序列分析已被用于系统地探索生命历程疾病轨迹。

在将协调的表型和基因型联系起来后,这些数据可用于确定治疗反应、不良反应和合并症的常见和罕见危险因素。表型多基因性和跨性状遗传重叠的差异推动了 MiXeR等工具的开发,这些工具可以提高我们对感兴趣性状的遗传结构以及它们如何与其他性状重叠的理解。尽管标准 GWAS 方法可用于研究与治疗相关的表型,但这些性状的可用样本量通常小于疾病表型,这突出表明需要更先进的生物统计工具,例如以下示例。MOSTest 利用多变量数据来提高常见变体的发现和复制率。条件和结合错误发现率方法可用于识别严重精神障碍与治疗反应或合并症疾病/因素之间共有的多基因风险因素,从而改进预测和分层。在对体重指数(一种主要共病性状)进行条件反射后,应用条件错误发现率方法以促进与 TRS 相关的遗传变异的发现,确定了 2 个 TRS 的新位点。多性状分析,例如,使用基因组结构方程模型和 GWAS 的多性状分析,也可用于通过利用相关性状之间的遗传重叠来改进与治疗结果相关的常见变异的发现。

大多数现有的 GWAS 方法评估插补而不是直接测序的多态性。对于发现在精神障碍中赋予无反应或不良反应风险的罕见变异,可以应用长程定相法。这种方法将测序数据中的变异归因于大量群体样本,从而大大提高了罕见变异的发现。然而,来自 GWAS 的发现可能难以解释。因此,各种精细定位方法旨在识别 GWAS 中已鉴定的变异中的因果单核苷酸多态性。Finemap-MiXeR是一种最近开发的用于基因组数据精细映射的变分贝叶斯方法,已被证明在估计基因型-表型关系方面优于大多数其他方法,因为它的精细映射算法在实际应用中检测到更多的因果变异。Finemap-MiXeR 能够识别每个基因座的少量遗传变异,这对于预测独立样本中的表型非常有用。基因集分析 (GSA) 对于确定与 GWAS 结果相关的生物通路和相关的组织和细胞类型特异性见解变得非常重要。GSA 方法,如 MAGMA、Fisher 精确(超几何)检验和分层连锁不平衡评分回归,对于理解 GWAS 结果的生物学意义已变得很重要。与标准 GSA 方法相比,一种新的 GSA 工具 GSA-MiXeR估计倍数富集并识别具有更高生物学特异性的基因集,从而为复杂多基因疾病的病理生物学提供新的见解,这可能有助于推进精神障碍的分类、诊断和治疗。

最后,可以整合使用上述工具和方法获得的表型和遗传信息,以改善对治疗结果和合并症的预测。多基因危害评分是一种最初应用于阿尔茨海默病的预测发病年龄的工具,可用于预测药物反应和不良反应。多基因风险评分将 Cox 比例风险模型应用于疾病的 GWAS 数据及其发病年龄的信息,以估计疾病发展的瞬时风险。因此,多基因危害评分为将多基因信息推向临床实用提供了一个富有成效的框架。

综上所述,为了实现精准治疗的愿景,必须通过新颖的分析算法来利用基因发现,以便能够转化为临床应用。通过将遗传信息与临床和生活方式数据相结合来预测治疗结果,可以提高预测的准确性。针对药物治疗结果和多病共存疾病轨迹的新型人工智能统计方法和改进的预测和分层算法将为治疗精神障碍及其伴随的合并症开辟新的途径,以确定最佳治疗方案并改善患者的生活质量。

6. 临床使用前验证

为了测试与治疗结果相关的遗传变异的基因型-表型关联的有效性,需要在独立的真实世界样本中进行复制。在最近的一项研究中,确定了先前发现的 NFIB 基因和 CYP1A 变异对吸烟者和非吸烟者氯氮平血清浓度的相互作用。具体来说,吸烟并携带所研究的 CYP1A 和 NFIB 变体的患者可能需要高 3 倍剂量的氯氮平。此外,前面提到的研究表明氯氮平剂量与 SCZ 的多基因风险呈正相关,在 3 个 TRS 患者的独立样本中发现了这种关联,支持药物遗传学对氯氮平精确给药的临床影响。然而,需要大型真实世界复制队列来验证 GWAS 对精神药物治疗结果的遗传发现。

RWD 还为验证和改进预测模型提供了机会,即确定目前无法准确预测的患者的治疗结果,并确定其他数据以提高其他临床决策的预测能力。确定具有特定基因组变异的个体,并在真实世界患者的回忆研究中进行后续评估,称为反向表型,可以验证给定的预测图谱,以确保已建立的遗传预测模型有效。对于治疗结果的基因型 - 表型关联,可以对已开始精神药物治疗的患者进行反向表型分析。通过将这些病例分为预测积极治疗结果可能性高的患者组、预测治疗结果可能性高的患者以及模型无法准确预测结果状态的患者组,可以验证开发的算法。同样,可以通过收集无法准确预测的个体的额外临床和结果信息来改进预测模型。通过这种方式,可以确定感兴趣的结果,并可以识别其他数据以提高模型对这些个体的预测能力。这将有助于估计方法的准确性并促进其他相关数据的收集,从而可能允许开发具有临床实用性的更准确的预测和分层算法。

7. 临床实施和效用

使用和结合来自生物样本库、医院、登记处、自我报告和医疗记录的多学科 RWD 以及来自临床研究的数据,将有助于推进精神障碍的知识、临床管理和药物治疗。为了在临床实践中实施精准医疗,尤其是跨越国界,自然语言处理工具可用于跨数据源和国家的数据提取和协调,容器技术可以用作跨境分析的平台,工具可用于跨国家以统一的方式标准化各种数据。一旦大型、深表型 RWD 可用于临床,就可以针对不同的临床和种族亚组训练和验证预测模型,并按年龄和性别分层以改进结果预测。通过开发和验证基于可测量生物标志物(即基因型)的先进分层和预测工具,结合药物治疗结果和其他反应预测因子(症状、疾病史、心脏代谢血液标志物、体重指数等),可以识别对可用药物治疗无反应的患者。识别无反应的患者将节省经济成本,同时避免无效和不必要的治疗产生的不利影响。这将使卫生和监管机构能够在药物治疗的安全性、质量和有效性方面提高护理标准。

目前,临床上还没有用于预测精神病学治疗结果的工具。基于预测和分层算法构建的临床决策支持工具与数字工具集成可能会改善疾病结果。这样的临床管理平台应设计为一个集成的软件解决方案,将有关风险因素和结果预测因子(临床信息、社会人口统计学、遗传学)的基线信息与预测和分层算法相结合。这些算法可以与软件系统集成,以包含随访和结果数据,例如特定不良反应(例如肥胖、运动障碍)、自我报告(例如嗜睡、性功能障碍)、生物标志物(例如血糖水平、血脂)和从登记处收集的社会经济因素(例如,社会经济地位、教育)。为了使该平台成为临床相关工具,监测系统应建立在综合临床决策支持分析的基础上,并包括在疾病进展的关键时间点进行干预的具体建议,例如改变药物类型和剂量、身体活动、更健康的饮食,以及在需要时转诊给其他学科(心脏病学、内分泌学)的专家。监测系统应该有一个用户友好的仪表板,临床医生可以在其中快速、轻松、安全地访问患者的分析和报告,为临床决策提供信息以实现最佳监测。这样的平台可以包含帮助临床医生回答实施精准精神病学必须解决的实际、道德和用户相关问题的信息。将多源数据和算法与使用该平台时从临床实践中检索的新数据相结合,预测模型将得到进一步改进。通过改进的预测,临床管理平台的开发最终可能实现早期诊断,包括合并症的诊断,促进个体治疗的规划,并改进临床策略以减少不良反应以及预防与多药治疗相关的并发症。总之,一个将预测工具与临床信息相结合的精神疾病患者监测临床管理平台可能会对精神障碍患者的生活质量产生重大影响。但是,应根据患者的意愿使用该平台,确保在患者撤销对数据处理的同意时可以删除数据。

8. 道德考虑

将 RWD 和预测模型用于精准精神病学会带来道德挑战,特别是对导致 RWD 的个人的隐私保护。对基因组信息的使用尤其提出了伦理问题,包括知情同意、样本采集、储存、样本的可识别性、重新识别、在全球范围内共享样本以及隐私和保密。遗传材料的知情同意书应包含有关样本储存、匿名和提取样本选项的信息。数据保护问题必须通过数据保护立法和安全数据系统的实施来解决,以确保 RWD 无法识别并且数据得到安全处理。在欧洲,安全的数据处理环境必须符合《通用数据保护条例》和即将推出的欧洲健康数据空间的要求,尤其是在数据库交叉链接的情况下。带有数据捕获、协调和标准分析工具的软件容器技术可以满足这些要求,并可以跨境用于进行大规模基因组和表型数据分析。

对于预测和分层工具的临床使用,必须满足欧盟医疗器械法规等法规的要求。此外,在临床使用之前,需要确定软件工具的安全性、性能和风险收益比。通过根据《通用数据保护条例》和临床安全系统应用基于云的安全解决方案,可以构建一个多功能的基础设施,以支持跨医疗保健系统的管理平台。

9. 结论

为了将精准医学干预引入精神病学,来自医疗保健系统的 RWD 与生物样本库和研究数据相结合,可以解决对大规模数据的需求,这些数据对于训练和测试与精神障碍治疗结果相关的预测模型是必要的。RWD 基础设施的实施、利用这些大型数据集的新工具以及带有药物反应和不良反应预测算法的临床管理平台为精准精神病学提供了巨大的机会,以改善精神障碍患者的治疗结果和生活质量。

参考文献:How Real-World Data Can Facilitate the Development of Precision Medicine Treatment in Psychiatry.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值