204. 计数质数

20 篇文章 0 订阅
该篇博客介绍了如何计算小于给定非负整数n的所有质数数量。通过使用`countPrimes`函数和`isPrime`辅助函数,实现了O(n√n)的时间复杂度。`isPrime`函数通过遍历到x的平方根来判断一个数是否为质数,从而提高了效率。这种方法对于大规模数据的质数计数问题提供了高效的解决方案。
摘要由CSDN通过智能技术生成

204. 计数质数

给定整数 n ,返回 所有小于非负整数 n 的质数的数量 。

1和2不是质数

class Solution {
    public int countPrimes(int n) {
        int ans = 0;
        for (int i = 2; i < n; ++i) {
            ans += isPrime(i) ? 1 : 0;
        }
        return ans;
    }
    public boolean isPrime(int x) {
        for (int i = 2; i * i <= x; ++i) {
            if (x % i == 0) {
                return false;
            }
        }
        return true;
    }
}

单个数检查的时间复杂度为 O ( n ) O(\sqrt{n}) O(n )n个数字就是 O ( n n ) O(n\sqrt{n} ) O(nn )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值