Task5 | 结构方程 | “老年病”与身份的关系

该研究通过结构方程模型分析,发现道德能力的损伤是导致老年病患者身份不连续的主要原因,而健忘症等其他认知缺陷影响较小。在模型中,道德、人格和病程等因素解释了身份变化的61.7%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 文章介绍

1.1 数据获取

1.2 论文内容

  • 无论是在科学界还是在普通大众中,都有一个普遍的观念,那就是,心智的衰退会剥夺个人的身份。然而,目前还没有系统的研究表明,是什么类型的认知损伤导致人们看起来不再是他们自己。
  • 文章测量了三种神经退行性疾病患者的可感知的身份变化:额颞叶痴呆、阿尔茨海默病和肌萎缩性脊髓侧索硬化症。
  • 结构方程模型表明,道德能力的损伤是身份不连续的主要原因。其他认知缺陷,包括健忘症,对身份的持久性没有可测量的影响。

2 理论模型

2.1 文章主要验证的结构方程模型:

(包含所有三种神经退行性疾病患者的)Main structural equation model:

结构模型将三种疾病类型的共同认知行为变化作为预测变量。其中5个预测变量(失用症、健忘症、失语、抑郁、病程,apraxia, amnesia, aphasia, depression, disease duration)可直接观测,另外2个建立的潜变量(人格和道德)。效标变量为潜变量,被感知到的身份(Identity)。
在这里插入图片描述

2.2 以上模型中的三个潜变量及其观测变量

在这里插入图片描述

3 结构方程:

全模型包括测量模型和结构模型。在全模型的建模过程中,通常先完成测量模型(即所有外源潜变量、内生潜变量之间两两相关,做CFA 模型)。在测量模型拟合效果较好的情况下,进一步分析外源潜变量和内生潜变量之间的结构模型。

  • “因为不同的项目测量尺度不同,所以在分析之前,所有的变量都被标准化和中心化转化为z分数(在适当的情况下还需要反向计分)”
  • 三因子测量模型如下:

3.1 测量模型CFA

在这里插入图片描述

3.1.1 结果摘要

在analysis property界面,output面板,选择输出的内容如下:
在这里插入图片描述

3.1.1.1 因子负荷

与原文结果基本一致,且每一项标准化 β 估计的 p 值都小于0.001。但个别项的回归系数与原论文中相差较远,如austerity(暂时搞不清楚原因)。
在这里插入图片描述

3.1.1.2 拟合优度

在通常情况下,希望RMSEA在0.08 以下(越小越好),NFI和CFI在0.9 以上(越大越好),RMR<0.05
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

结果

结果显示,除个别线之外,标准化后的每条线的载荷在0.5 以上或者接近0.5,拟合优度发现CFI 接近0.9,而RMSEA 接近于0,测量模型较好。

3.2 结构模型

接下来检验结构模型,加入另外5个可观测的预测变量,并增删单双箭头。还要注意为内生因子Identity增加负荷固定为1的误差项小圆。
另外,文中注明所有预测变量允许共变,因此所有预测变量之间都需要添加双向箭头。
在这里插入图片描述

3.2.1 结果摘要

3.2.1.1 模型注解

在这里插入图片描述

3.2.1.2 参数估计
  • β
    在这里插入图片描述
    在这里插入图片描述
  • R方
    在这里插入图片描述
    所有变量解释了identity61.7%的变化
3.2.1.3 修正指数与标准化载荷
3.2.1.4 拟合指标
  • CMIN/DF
    在这里插入图片描述
  • CFI
    在这里插入图片描述
  • RMSEA
    在这里插入图片描述
结果

结果显示,结构方程分析支持了我们的模型, χ(679) = 1254.903;CMIN/DF = 1.848,p<0.001;CFI = 0.855;RMSEA = 0.059。总共所有自变量加起来解释了身份(identity)变化方差的61.7%

4 结论

  • 显然,最有力的预测变量是道德。即可感知的身份变化是道德的变化,β= 0.71,p < .001(见原文图2a和表4)。
  • 失语的预测效果较弱但同样可靠,β= -0.17,p < . 01。
  • 模型中的其他变量,如apraxia、抑郁、健忘、人格等,它们的变化似乎对感知到的身份没有可测量的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值