动态规划学习专题2

本文探讨了动态规划的几个关键方面,包括划分型动态规划在解决复杂问题中的应用,博弈型动态规划如何在游戏策略中发挥作用,以及背包问题的优化,强调了考虑总承重在状态设计中的重要性。同时,还提及了记忆化搜索作为提高效率的手段,以及区间型动态规划的使用场景。
摘要由CSDN通过智能技术生成

 

 

 

 

 

 

 

 public int maxProfit(int[] prices) {
        int n = prices.length;
        if (n==0) return 0;
        // 最多两次买卖   两次 买卖 一共有五个阶段
        int[][] f = new int[n+1][6];
        // 1  持币观望   2 买入 3卖出 持币观望 4 第二次买入 5 第二次卖出 持币观望
        f[0][1] = 0;
        //前0天  一阶段  最大获利 为 0

        f[0][2] = Integer.MIN_VALUE;
        f[0][3] = Integer.MIN_VALUE;
        f[0][4] = Integer.MIN_VALUE;
        f[0][5] = Integer.MIN_VALUE;


        // 1 3 5
        for (int i = 1; i <=n ; i++) {
            for (int j = 1; j <=5 ; j+=2) {
                f[i][j] =f[i-1][j];
                if (j>1&&i>1&&f[i-1][j-1]!=Integer.MIN_VALUE){
                f[i][j] = Math.max(f[i][j],f[i-1][j-1]+prices[i-1]-prices[i-2]);
                }
            }
            
            for (int j = 2; j <=5 ; j+=2) {
                f[i][j] = f[i-1][j-1];
                if (i>1&&f[i-1][j]!=Integer.MIN_VALUE){
                    f[i][j] = Math.max(f[i][j],f[i-1][j]+prices[i-1]-prices[i-2]);
                }

                if (j>2&&i>1&&f[i-1][j-2]!=Integer.MIN_VALUE){
                    f[i][j] = Math.max(f[i][j],f[i-1][j-2]+prices[i-1]-prices[i-2]);
                }
            }
        }

        return Math.max(f[n][1],Math.max(f[n][3],f[n][5]));
    }

 

 

 

 

 

 

  public int maxProfit(int k, int[] prices) {
        // write your code here
        int n = prices.length;
        if (n==0 ) return 0;
        if (k>n) {
            int res =0;
            for (int i = 0; i <n-1 ; i++) {
                res+= Math.max(0,prices[i+1]-prices[i]);
            }
            return res;
        }
        int f[][]  = new int[n+1][2*k+2]; //描述右2k+1个阶段
        f[0][1] =0;
        for (int i = 2; i <2*k+2 ; i++) {
            f[0][i] = Integer.MIN_VALUE;
        }

        for (int i = 1; i <=n ; i++) {
            for (int j = 1; j <=2*k+1 ; j+=2) {
                f[i][j] =f[i-1][j];
                if (j>1&&i>1&&f[i-1][j-1]!=Integer.MIN_VALUE){
                    f[i][j] = Math.max(f[i][j],f[i-1][j-1]+prices[i-1]-prices[i-2]);
                }
            }
            for (int j = 2; j <=2*k+1 ; j+=2) {
                f[i][j] = f[i-1][j-1];
                if (i>1&&f[i-1][j]!=Integer.MIN_VALUE){
                    f[i][j] = Math.max(f[i][j],f[i-1][j]+prices[i-1]-prices[i-2]);
                }

                if (i>1&&j>2&&f[i-1][j-2]!=Integer.MIN_VALUE){
                    f[i][j] = Math.max(f[i][j],f[i-1][j-2]+prices[i-1]-prices[i-2]);
                }

            }
        }

        int max =0;
        for (int i = 0; i <=2*k+1 ; i++) {
            max =Math.max(max,f[n][i]);
        }
        return max;
    }

 

 

 

 

 

 

 public int longestIncreasingSubsequence(int[] nums) {
        // write your code here
        int n = nums.length;
        if (n==0) return 0;
        int[] f = new int[n];

        // f[i]  表示 以 nums[i] 结尾的最长上升子序列的长度
        int res =0;

        for (int i = 0; i <n ; i++) {
            f[i] =1;
            for (int j = 0 ; j <i ; j++) {
                if (nums[i]>nums[j]&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>