【查找算法(一)】有序表查找

二分查找

前提是线性表中的记录必须关键码有序,线性表必须采取顺序存储。
基本思想:在有序表中,取中间记录为比较对象,若给定值与中间记录的关键字相等,则查找成功;若小于,则在中间记录的左半区继续查找;若大于,则在右半区继续查找。不断重复上述过程,直到查找成功,或所查区域无记录,查找失败为止。
时间复杂度:O(logn)
示例代码:

int Binary_Search(int *a,int n,int key){
	int low,high,mid;
	/*首位用作哨兵*/
	low=1;
	high=n;
	while(low<=high){
		mid=(low+high)/2;/*折半查找*/
		if(key<a[mid]){
			high=mid-1;
		}else if(key>a[mid]){
			low=mid+1;
		}else{
			return mid;
		}
	}
	return 0;/*说明没有找到*/
}

插值查找(二分查找改进)

// 修改mid的值 => mid=low+((key-a[low])/(a[high]-a[low]))*(high-low)
mid=(low+high)/2 = low+1/2*(high-low) 

时间复杂度也是O(logn),但是对于表长较大,关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比二分查找要好得多。

斐波那契查找

斐波那契数列:F(n)=F(n-1)+F(n-2) (n=2,3,4,…)
代码示例:

int Fibonacci_Search(int *a,int n,int key){
	int low,high,mid,i,k;
	low=i;
	high=n;
	k=0;
	while(n>F[k]-1){		/*计算n位于斐波那契数列的位置,n是查找表的长度*/
		k++;
	}
	for(i=n;i<F[k]-1;i++){	/*将不满的数值补全*/
		a[i]=a[n];
	}
	while(low<=high){
		mid=low+F[k-1]-1;	/*计算当前分隔的下标*/
		while(key<a[mid]){
			high=mid-1;
			k=k-1;
		}else if(key>a[mid]){
			low=mid+1;
			k=k-2;
		}else{
			if(mid<=n)
				return mid;		/*若相等则说明mid即为查找到的位置*/
			else
				return n;		/*若mid>n说明是补全数值,返回n*/
		}
	}
}

在这里插入图片描述
效率分析:
时间复杂度O(logn),但是就平均性能来说,斐波那契查找要优于折半查找。但是如果是最坏情况,比如始终处于左侧长半区查找,则查找效率要低于折半查找。此外,斐波那契查找只是最简单的加减法运算,没有乘除运算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值