二分查找
前提是线性表中的记录必须关键码有序,线性表必须采取顺序存储。
基本思想:在有序表中,取中间记录为比较对象,若给定值与中间记录的关键字相等,则查找成功;若小于,则在中间记录的左半区继续查找;若大于,则在右半区继续查找。不断重复上述过程,直到查找成功,或所查区域无记录,查找失败为止。
时间复杂度:O(logn)
示例代码:
int Binary_Search(int *a,int n,int key){
int low,high,mid;
/*首位用作哨兵*/
low=1;
high=n;
while(low<=high){
mid=(low+high)/2;/*折半查找*/
if(key<a[mid]){
high=mid-1;
}else if(key>a[mid]){
low=mid+1;
}else{
return mid;
}
}
return 0;/*说明没有找到*/
}
插值查找(二分查找改进)
// 修改mid的值 => mid=low+((key-a[low])/(a[high]-a[low]))*(high-low)
mid=(low+high)/2 = low+1/2*(high-low)
时间复杂度也是O(logn),但是对于表长较大,关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比二分查找要好得多。
斐波那契查找
斐波那契数列:F(n)=F(n-1)+F(n-2) (n=2,3,4,…)
代码示例:
int Fibonacci_Search(int *a,int n,int key){
int low,high,mid,i,k;
low=i;
high=n;
k=0;
while(n>F[k]-1){ /*计算n位于斐波那契数列的位置,n是查找表的长度*/
k++;
}
for(i=n;i<F[k]-1;i++){ /*将不满的数值补全*/
a[i]=a[n];
}
while(low<=high){
mid=low+F[k-1]-1; /*计算当前分隔的下标*/
while(key<a[mid]){
high=mid-1;
k=k-1;
}else if(key>a[mid]){
low=mid+1;
k=k-2;
}else{
if(mid<=n)
return mid; /*若相等则说明mid即为查找到的位置*/
else
return n; /*若mid>n说明是补全数值,返回n*/
}
}
}
效率分析:
时间复杂度O(logn),但是就平均性能来说,斐波那契查找要优于折半查找。但是如果是最坏情况,比如始终处于左侧长半区查找,则查找效率要低于折半查找。此外,斐波那契查找只是最简单的加减法运算,没有乘除运算。