【退役之重学Java】Redis 的过期策略

Redis 的过期策略

一、假设设置一个key 只能存活1h,那么1h之后,Redis 是怎么对这批 key 进行删除的?

回答: 定期删除 + 惰性删除

  1. 所谓定期删除,指的是 Redis 默认每隔100ms 就随机抽取一些设置了过期时间的 key,检查其是否过期,如果过期就删除。注意,这里可不是每隔 100ms 就遍历所有设置过期时间的key ,那样就是性能的灾难。实际上,Redis 是每隔 100ms 随机抽取一些 key 来检查和删除的。
  2. 但问题是,定期删除可能会导致过多的 key 到了时间并没有删除掉。所以就需要惰性删除。就是说,在获取某个 key 的时候, Redis 会检查一下,这个 key 如果设置了过期时间,并且是否过期了,如果过期了,此时就会删除。
  3. 通过上述两种手段结合起来,保证过期的 key 一定回被干掉
  4. 但是,实际上这样还是存在一些问题的,如果定期删除漏掉了很多过期的 key, 然后你也没有及时去查,也就没走惰性删除,此时会怎么样?如果大量过期的 key 堆积在内存里,导致 Redis 内存耗尽了,那么怎么办呢?
  5. 答案是:内存淘汰机制

二、内存淘汰机制

如果 Redis 的内存占用过多,此时就会进行内存淘汰,有如下一些策略:
1)noeviction: 当内存不足以容纳新写入的数据时,新写入操作会报错,这个一般没人用吧,实在太恶心了
2)allkeys-lru: 当内存不足以容纳新写入的数据时,在键空间中,移除最近最少使用的key(这个是最常用的)
3)allkeys-random: 当内存不足以容纳新写入的数据时,在键空间中,随机移除某个 key(一般没人用)
4) volatile-lru: 当内存不足以容纳新写入的数据时,在设置了过期时间的键空间中,移除最近最少使用的 key(这个一般不太合适)
5)volatile-random: 当内存不足以容纳新写入的数据时,在设置了过期时间的键空间中,随机移除某个 key
6)volatile-ttl: 当内存不足以容纳新写入的数据时,在设置了过期时间的键空间中,有更早过期时间的 key 先移除

手写一个 LRU 算法

下面是一个简单的手写LRU(Least Recently Used)算法的示例代码,使用双向链表和哈希表实现:

import java.util.HashMap;

class LRUCache {
    // 定义双向链表节点
    class Node {
        int key;
        int value;
        Node prev;
        Node next;

        public Node(int key, int value) {
            this.key = key;
            this.value = value;
        }
    }

    private HashMap<Integer, Node> map; // 哈希表用于快速查找缓存数据
    private Node head; // 虚拟头节点
    private Node tail; // 虚拟尾节点
    private int capacity; // 缓存容量

    public LRUCache(int capacity) {
        this.capacity = capacity;
        map = new HashMap<>();
        head = new Node(-1, -1);
        tail = new Node(-1, -1);
        head.next = tail;
        tail.prev = head;
    }

    // 获取缓存数据
    public int get(int key) {
        if (map.containsKey(key)) {
            Node node = map.get(key);
            remove(node); // 从链表中移除当前节点
            addFirst(node); // 将当前节点移动到链表头部
            return node.value;
        }
        return -1;
    }

    // 写入缓存数据
    public void put(int key, int value) {
        if (map.containsKey(key)) {
            Node node = map.get(key);
            node.value = value;
            remove(node); // 从链表中移除当前节点
            addFirst(node); // 将当前节点移动到链表头部
        } else {
            if (map.size() == capacity) {
                map.remove(tail.prev.key); // 移除链表尾部节点对应的缓存数据
                remove(tail.prev); // 移除链表尾部节点
            }
            Node newNode = new Node(key, value);
            map.put(key, newNode);
            addFirst(newNode); // 将新节点添加到链表头部
        }
    }

    // 从链表中移除节点
    private void remove(Node node) {
        node.prev.next = node.next;
        node.next.prev = node.prev;
    }

    // 将节点添加到链表头部
    private void addFirst(Node node) {
        Node next = head.next;
        head.next = node;
        node.prev = head;
        node.next = next;
        next.prev = node;
    }
}

在这个示例中,LRUCache类实现了一个LRU缓存,使用双向链表来维护缓存数据的访问顺序,使用哈希表来快速查找缓存数据。通过get和put方法实现对缓存的读取和写入操作,保持缓存中数据的最近访问顺序。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值