数据结构与算法之归并排序
目录:
- 归并排序介绍
- 归并排序思想示意图
- 代码实现
1. 归并排序介绍
归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列。即先将每个子序列有序,再使子序列短间有序。它的时间复杂度是 O(nlogn),空间复杂度是 O(n),是稳定的排序算法
2. 归并排序思想示意图
-
归并排序思想示意图1-基本思想:
说明:
可以看到这种结构很像一棵完全二叉树,本文的归并排序我们采用递归去实现(也可采用迭代的方式去实现)。分阶段可以理解为就是递归拆分子序列的过程。 -
归并排序思想示意图2-合并相邻有序子序列:
再来看看治阶段,我们需要将两个已经有序的子序列合并成一个有序序列,比如上图中的最后一次合并,要将[4,5,7,8]和[1,2,3,6]两个已经有序的子序列,合并为最终序列[1,2,3,4,5,6,7,8],来看下实现步骤
3. 代码实现
代码实现一:
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] arr= {5,3,1,2,6};
mergeSort(arr);
System.out.println(Arrays.toString(arr));
}
private static void mergeSort(int[] arr) {
if (arr==null||arr.length<2)
return;
mergeSort(arr,0,arr.length-1);
}
private static void mergeSort(int[] arr,int l,int r) {
if (l == r)
return;
int mid = (l+r)/2;
mergeSort(arr,l,mid);
mergeSort(arr,mid+1,r);
merge(arr,l,mid,r);
}
private static void merge(int[] arr, int l, int mid, int r) {
int[] help = new int[r-l+1];
int i = 0;
int p1 = l;
int p2 = mid+1;
while (p1<=mid&&p2<=r)
help[i++] = arr[p1]<arr[p2]?arr[p1++]:arr[p2++];
while (p1<=mid)
help[i++] = arr[p1++];
while (p2<=r)
help[i++] = arr[p2++];
for (i = 0; i < help.length; i++)
arr[l+i] = help[i];
}
}
代码实现二:
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] arr = {8,4,5,7,1,3,6,2};
int temp[] = new int[arr.length];
mergeSort(arr, 0, arr.length - 1, temp);
System.out.println("归并排序后=" + Arrays.toString(arr));
}
//分+合的方法
public static void mergeSort(int[] arr, int left, int right, int[] temp) {
if (left < right) {
int mid = (left + right) / 2; //中间索引
//向左递归进行分解
mergeSort(arr, left, mid, temp);
//向右递归进行分解
mergeSort(arr, mid + 1, right, temp);
//到合并
merge(arr, left, mid, right, temp);
}
}
//合并的方法
/**
* @param arr 带排序的原始数组
* @param left 左边有序序列的初始索引
* @param mid 中间索引
* @param right 右边索引
* @param temp 中转的数组
*/
public static void merge(int[] arr, int left, int mid, int right, int[] temp) {
int i = left; //初始化i,左边有序序列的初始索引
int j = mid + 1; //右边有序序列的初始化索引
int t = 0; //指向temp数组的当前索引
//1. 先把左右两边的数据按规则填充到temp数组
//直到左右两边的有序序列,有一边处理完毕为止
while (i <= mid && j <= right) { //继续
if (arr[i] <= arr[j]) {
//如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素
//即将左边的当前元素,拷贝到temp数组
//然后t++,i++
temp[t] = arr[i];
++t;
++i;
} else { //反之将右边有序序列的当前元素填充到temp数组
temp[t] = arr[j];
++t;
++j;
}
}
//2. 把有剩余数据的一边的数据依次填充到temp
while (i <= mid) { //左边的有序序列还有剩余的元素,就全部填充到temp
temp[t] = arr[i];
++t;
++i;
}
while (j <= right) { //右边的有序序列还有剩余的元素,就全部填充到temp
temp[t] = arr[j];
++t;
++j;
}
//3. 将temp数据的元素拷贝到arr
//注意:不是每次都拷贝所有
t = 0;
//第一次合并tempLeft = 0 ,right = 1 // tempLeft=2 ,right= 3 //tempLeft=0,right=3
for (int tempLeft = left; tempLeft <= right; ++tempLeft) {
arr[tempLeft] = temp[t];
++t;
}
}
}
编译结果
800万条数据大概3s排完。