Nodejs实现的学校场地及设备预约系统的设计与实现

62 篇文章 0 订阅
37 篇文章 0 订阅

《[含文档+PPT+源码等]精品Nodejs实现的学校场地及设备预约系统的设计与实现》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程!


研究背景:
随着社会的发展和教育水平的提高,学校场地和设备的利用率也越来越高。然而,传统的预约方式往往存在一些问题,比如预约流程繁琐、效率低下、信息不透明等。因此,基于Nodejs实现的学校场地及设备预约系统应运而生。

研究目的:
本研究旨在设计和实现一个基于Nodejs的学校场地及设备预约系统,通过优化预约流程和提高信息透明度,提高学校场地和设备的利用效率,满足师生的需求。

研究意义:
1. 提高学校场地和设备的利用效率:通过系统化的预约流程和信息透明度,可以更好地安排和管理学校的场地和设备资源,提高利用效率。

2. 提升预约体验:传统的预约方式往往繁琐且效率低下,而基于Nodejs的学校场地及设备预约系统可以提供便捷的预约方式,提升用户的预约体验。

3. 优化资源管理:通过系统化的预约管理,可以更好地掌握学校场地和设备的使用情况,为后续的资源规划和管理提供数据支持。

4. 促进信息共享:学校场地和设备的预约信息可以通过系统进行共享,方便师生之间的交流和合作,促进资源的共享和利用。

综上所述,基于Nodejs实现的学校场地及设备预约系统具有重要的研究意义和实际应用价值。


软件开发环境及开发工具:

操作系统:Windows 10、Windows 7、Windows 8

开发语言:node.js

前端技术:JavaScript、VUE.js(2.X)、css3

开发工具:Visual Studio Code/HbuildX

数据库:MySQL 5.7.26(版本号)

数据库管理工具:phpstudy/Navicat

Node版本:node.js 16


本系统功能完整,适合作为毕业设计、课程设计、数据库大作业 参考 以及学习商用皆可。

下面是资料信息截图:

功能介绍:

该系统采用NODEJS技术开发,后台使用MySQL数据库进行数据存储。

系统主要分为两大模块:即管理员模块和用户模块。本文从学校场地及设备预约管理流程分析入手,分析了其功能性需求和非功能性需求,设计了一个由管理员和用户两部分组成的学校场地及设备预约系统。用户登录进入可以实现首页、场地信息、设备信息、我的等功能;在我的页面可以对场地预约、设备预约、我的收藏管理、留言反馈、个人中心等进行详细操作;管理员可通过后台管理界面管理用户信息和系统管理。

下面是系统运行起来后的一些截图:

/error/404.png

/error/404.png

/error/404.png

/error/404.png

/error/404.png

/error/404.png

/error/404.png

/error/404.png

/error/404.png

/error/404.png

/error/404.png

/error/404.png

/error/404.png

/error/404.png

/error/404.png


nodejs毕业设计推荐项目

精品Nodejs实现的微信小程序的书馆预约系统-图书借阅归还
精品Nodejs实现的微信小程序的校园活动报名签到管理系统的设计与实现
精品Nodejs实现的微信小程序驾考宝典系统驾照科目考试题库试题
精品Nodejs实现的校园疫情防控管理系统的设计与实现健康打卡
精品Nodejs实现的房屋装饰商城-装修购物
精品Nodejs实现的微信小程序的图书馆选座预约与学习排名系统签到的设计
精品Nodejs实现的微信小程序的文献管理系统
精品Nodejs实现的儿童疫苗接种管理系统
精品Nodejs实现的校园求职平台管理系统App
精品Nodejs实现的建材商城管理系统App-家居购物商城
精品Nodejs实现的健身管理系统-健身教练会员打卡
精品Nodejs实现的微信小程序的疫情采购平台的设计与实现-团购秒杀购物商城
精品Nodejs实现的舞蹈学校报名网站
精品Nodejs实现的奶茶店微信小程序的设计与实现-甜品店购物商城
精品Nodejs实现的校园云盘系统的设计与实现-在线网盘
精品Nodejs实现的基于web的二手房交易系统的设计与实现-房屋房源买卖购房购物商城
精品Nodejs实现的微信小程序的校园跑腿系统-快递收取件
精品Nodejs实现的微信小程序的旅游景点应用平台系统
精品Nodejs实现的“练习格斗体育竞技”微信小程序的设计与实现-会员卡管理场馆预约
精品Nodejs实现的微信小程序的运动减肥管理系统设计与实现菜谱美食健康
精品Nodejs实现的社区居民互助系统的设计与实现-车位房子租赁
精品Nodejs实现的旅游景点的设计与实现[包运行成功+永久免费答疑辅导]精品Nodejs实现的旅游景点的设计与实现

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值