买卖股票的最佳时机II
给你一个整数数组 prices
,其中 prices[i]
表示某支股票第 i
天的价格。
在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。
返回 你能获得的 最大 利润 。
示例 1:
输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。
总利润为 4 + 3 = 7 。
示例 2:
输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。
总利润为 4 。
示例 3:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为 0 。
提示:
1 <= prices.length <= 3 * 104
0 <= prices[i] <= 104
我们可以使用一个二维数组dp,其中dp[i][0]
表示第i天不持有股票的最大利润,dp[i][1]
表示第i天持有股票的最大利润。在每个位置,我们可以选择买入或卖出或不进行任何操作。因此,我们可以使用以下状态转移方程:
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i])
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i])
最终的答案就是dp[-1][0],即在最后一天不持有股票的最大利润。
下面是Python代码:
def maxProfit(prices: List[int]) -> int:
# 初始化dp数组为0
dp = [[0, 0] for _ in range(len(prices))]
# 初始化dp[0][0]为0,表示在第一天不持有股票
dp[0][0] = 0
# 初始化dp[0][1]为-prices[0],表示在第一天买入
dp[0][1] = -prices[0]
# 遍历整个数组
for i in range(1, len(prices)):
# 计算dp[i][0]和dp[i][1]
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i])
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i])
# 返回最大利润
return dp[-1][0]