最长递增子序列
给你一个整数数组 nums
,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7]
是数组 [0,3,1,6,2,2,7]
的子序列。
示例 1:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
输入:nums = [0,1,0,3,2,3]
输出:4
示例 3:
输入:nums = [7,7,7,7,7,7,7]
输出:1
思路:
- 定义状态:dp[i] 表示以 nums[i] 结尾的最长递增子序列的长度。
- 初始化状态:dp[i] 的初始值为 1,因为每个元素本身就是一个长度为 1 的递增子序列。
- 状态转移方程:对于每个 i,从 0 到 i-1 遍历 j,如果
nums[j] < nums[i]
,则dp[i] = max(dp[i], dp[j] + 1)
。 - 最终结果:最长递增子序列的长度即为 dp 数组中的最大值。
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
if len(nums) == 1: return 1
dp = [1] * len(nums)
result = 1
for i in range(1, len(nums)):
for j in range(i):
if nums[i] > nums[j]:
dp[i] = max(dp[i], dp[j] + 1)
result = max(dp[i], result)
return result