每日一题之最长递增子序列

最长递增子序列

题目链接

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1


思路:

  1. 定义状态:dp[i] 表示以 nums[i] 结尾的最长递增子序列的长度。
  2. 初始化状态:dp[i] 的初始值为 1,因为每个元素本身就是一个长度为 1 的递增子序列。
  3. 状态转移方程:对于每个 i,从 0 到 i-1 遍历 j,如果 nums[j] < nums[i],则 dp[i] = max(dp[i], dp[j] + 1)
  4. 最终结果:最长递增子序列的长度即为 dp 数组中的最大值。
class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        if len(nums) == 1: return 1

        dp = [1] * len(nums)
        result = 1

        for i in range(1, len(nums)):
            for j in range(i):
                if nums[i] > nums[j]:
                    dp[i] = max(dp[i], dp[j] + 1)
                    result = max(dp[i], result)
        
        return result
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值