数据结构与与算法之二分法查找

二分法思想:

举个例子:猜字游戏;

随机写一个0到99之间的数字,然后猜猜写出的数字。猜的过程中,每猜一次,只会告诉您猜的大了还是小了,知道猜中为止。

假设写出的数字是23,你可以按照下面的步骤来试一试。(如果猜测范围的数字有偶数个,中间数有两个,就选择较小的那个)。

 

7次就猜出来了,是不是很快,这个例子用的是二分思想,按照这个思想,即便猜的是0到999的数字,最多也只要10次就能猜中。

回到实际开发场景。假设有1000条订单数据,已经按照订单金额从小到大排序,每个订单金额不同,并且最小单位是元。现在想知道是否存在金额等于19元的订单,如果存在,则返回订单数据;如果不存在,则返回null。

最简单的办法是从第一个订单开始,一个一个遍历这1000订单,直到找到金额等于19元的订单为止。但这样查找会比较慢,最坏情况下,可能要遍历完这1000条记录才能找到。那用二分查找能不能更快地解决呢?

假设只有10个订单,订单金额分别是:8,11,19,23,27,33,45,55,67,98。

还是利用二分法思想,每次都与区间的中间数据对比大小,缩小查找区间的范围。为了更加直观,用一张查找过程的图。其中low和high表示带查找区间的下标,mid表示查找区间的中间元素下标。

 

二分查找针对的是一个有序的数据集合,查找思想有点类似分治思想。每次都通过跟区间的中间元素对比,将待查找的区间缩小为之前的一半,直到找到要查找的元素,或者区间

 

O(logn)惊人的查找速度

二分查找是一种非常高效的查找算法,下面来分析一下它的时间复杂。

我们假设数据大小是n,每次查找后数据都会缩小为原来的一半,也就是会除以2。最坏情况下,直到查找区间被缩小为空,才停止。

可以看出来,这是一个等比数列。其中n/2^k=1时,k的值就是总共缩小的次数。而每一次缩小操作只涉及数据的大小比较,所以,经过了k次区间缩小操作,时间的复杂度为O(k)。通过n/2^k=1,我们可以求得k=log2^n,所以时间复杂度为O(logn)。

 

二分查找的递归与非递归实现

下面是一个最简单的二分查找算法的循环实现,其中用二分查找值就等于给定值的数据。

public int a, int 10K = e; int high while (low high) int n, int value) { int mid = (Ion * high) / 2; if (almid] = value) { return mid; } else if (almid] < value) { 10K = mid + I; } else { high = mid return

low、high、mid都是数组下标,其中low、high表示当前查找的区间范围,初始low=0,high=n-1.mid表示[low,high]的中间位置。通过对比a[mid]与value的大小,来更新接下来要查找的区间范围,直到找到或者区间缩小为0,就退出。这里有三个容易出错的地方:

1、循环退出条件

注意是low<=high,而不是low<high。

2、mid的取值

实际上,mid=(low+high)/2这种写法是有问题的。因为如果low和high比较大的话,两者之和就有可能会溢出。改进的地方是将mid的计算方式写成low+(high-low)>>1)。因为相比除法运算来说,计算机处理位运算要快得多。

3、low和high的更新

Low=mid+1,high=mid-1。注意这里+1和-1,如果直接写成low=mid或者high=mid,就可能发生死循环。比如,当high=3,low=3时,如果a[3]不等于value,就会导致一直循环不退出。

 

实际上二分查找除了循环来实现,还可以用递归来实现。代码如下

 

二分查找应用场景的局限性

(1)、二分查找依赖的是顺序表结构,简单点说就是数组

二分法查找算法需要按照下标随机访问元素,只能用在数据通过顺序表来储存的数据结构上。如果数据是通过其他数据结构存储的,则无法应用二分查找。

(2)、二分查找针对的是有序数据

二分查找要求数据必须是有序,主要适用于一组静态的数据,没有频繁地插入、删除,我们就可以进行一次排序,多次二分查找的场景中。

(3)、数据量太小不适合二分查找

如果处理的数据量很小,完全没有必要用二分查找,顺序遍历就足够了。不过如果数据间的比较操作非常耗时,不管数据量的大小,使用二分法查找比较合适。

(4)、数据量太大也不适合二分法查找

 

二分法的底层需要依赖数组这种数据结构,而数组为了支持随机访问的特性,要求内存空间连续,对内存的要求比较苛刻。

二分法查找是作用在数组这种结构之上的,所以太大的数据用数组存储就比较吃力,也就不用二分查找了。

Q:如何在1000万个整数中快速查找某个整数?

假设我们的内存限制是100MB,每个数据大小是8字节,最简单的办法是将数据存储在数组中,内存占用差不多是80MB,符合内存的限制。借助今天学习的内容,我们可以先对这1000万数据从小到大排序,然后利用二分查找算法,就可以快速地查找想要的数据。

 


扫码关注微信公众号,欢迎技术交流,其中含有大量免费的人工智能、图像处理、IT资料:

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值