吴恩达--深度学习学习笔记
现如今,深度学习工程师已经成为了非常热门的职业,掌握深度学习将会为你带来大量的工作机会。甚至可以说,深度学习是一种新兴的“超能力”。
汤姆鱼
微信公众号「汤姆鱼」
展开
-
第二周 测验题
实例:Ps: np.dot()函数是对矩阵进行运算的;例如:np.dot(a,b)意思是:矩阵a和矩阵b相乘,前提条件是:矩阵a的列数要和矩阵b的函数相同,这样才符合矩阵的乘法运算法则;实例:实例:...原创 2019-08-05 13:32:11 · 347 阅读 · 0 评论 -
第十六篇:关于python/numpy向量说明
1、创建一个数组时,不要使用命令 a= np.random.randn(5), 这种命令生成的数据结构为(5,),秩为1,既不是行向量也不是列向量,被称作a的一维数组,这导致它有一些不是很直观的效果;举个例子,如果我输出一个转置阵,最终结果它会和a看起来一样,所以a和a的转置阵最终结果看起来一样。而如果我输出a和a的转置阵的内积,你可能会想:a乘以a的转置返回给你的可能会是一个矩阵。但是如果我...原创 2019-08-05 13:22:59 · 515 阅读 · 0 评论 -
第十五篇:Python 中的广播 (Broadcasting in python)
1、实例: 下面列表是不同食物(每100g)中不同营养成分的卡路里含量表格,表格为3行4列,列表示不同的食物种类,从左至右依次为苹果,牛肉,鸡蛋,土豆。行表示不同的营养成分,从上到下依次为碳水化合物,蛋白质,脂肪。那么,我们现在想要计算不同食物中不同营养成分中的卡路里百分比。现在计算苹果中的碳水化合物卡路里百分比含量,首先计算苹果(100g)中三种营养成分卡路里总...原创 2019-08-02 13:39:31 · 5716 阅读 · 0 评论 -
第十四篇:向量化逻辑回归的梯度输出
1、计算m个数据的梯度:在之前的例子我们知道:原创 2019-07-25 19:28:40 · 247 阅读 · 0 评论 -
第十三篇:向量化逻辑回归(Vectorised Logistic Regression)
1、逻辑回归的前向传播步骤:如果你有m个训练样本,为了完成前向传播步骤,需要对于每一个样本都进行预测,即对m个样本都计算出预测值,过程为:对 第一个样本进行预测: = + b; = σ();对第二个样本进行预测...原创 2019-07-25 19:09:45 · 623 阅读 · 0 评论 -
第十二篇:向量化的更多例子
1、在上节课程中,我们知道通过numpy内置函数和避开显式循环(loop)的方式进行量化,从而有效提高代码的速度。2、经验提醒我,当我们在写神经网络程序时,或者在写逻辑(logistic)回归,或者其他神经网络模型时,应该避免写循环(loop)语句。虽然有时写循环(loop)是不可避免的,但是我们可以使用比如numpy的内置函数或者其他办法去计算。当你这样使用后,程序效率总是快于循环(lo...原创 2019-07-22 19:16:50 · 423 阅读 · 0 评论 -
第十一篇:向量化
1、为什么要用向量化? 向量化是非常基础的去除代码中for循环的艺术,在深度学习安全领域、深度学习实践中,你会经常发现自己训练大数据集,因为深度学习算法处理大数据集效果很棒,所以你的代码运行速度非常重要,否则如果在大数据集上,你的代码可能花费很长时间去运行,你将要等待非常长的时间去得到结果。所以在深度学习领域,运行向量化是一个关键的技巧。让我们举个实例说明什...原创 2019-07-20 20:01:56 · 2476 阅读 · 0 评论 -
第十篇:m个样本的梯度下降(Gradient Descent on m Example)
1、损失函数J(w,b)的定义: 其中,原创 2019-07-20 19:52:51 · 644 阅读 · 0 评论 -
第九篇:计算图(Computation Graph)
1、计算图来计算函数J:实例一:J(a,b,c)=3(a+bc)=3(5+3*2)=33;计算图: 2、计算图的导数计算 链式法则:?(?)/?(?)=?(?)/?(?)∗?(?)/?(?)=3*1=3;符号规定:在...原创 2019-07-19 18:04:54 · 1637 阅读 · 0 评论 -
第八篇:导数(Derivatives)
1、实例1 : f(a)=3a; 当a=2时,f(a)=6; 当a=2.001时,f(a)=6.003; 即函数f(a)在a=2时,它的斜率(slope)为k= (6.003-6)/(2.001-2) =3,这就是表示,当微小改变量a的值,??(?)/??=3等价于导数表达式; 实际上函数f(a)在某一点的斜率就是函数在该点的导...原创 2019-07-19 16:28:55 · 486 阅读 · 0 评论 -
第七篇:梯度下降法(Gradient Descent)
1、逻辑回归函数和代价函数 Logistics regression: Cost Function:在测试集上,我们想通过找到参数w和b,使得J(w,b)的值最小;那么通常采用梯度下降法(Gradient Descent)来求解。2、梯度下降法(Gradient Descent)梯度下降法的形象化说明在这个图中...原创 2019-07-12 13:00:10 · 564 阅读 · 0 评论 -
第六篇: 二分类逻辑回归的代价函数(Logistic Regression Cost Function)
1、逻辑回归的输出函数为了让模型通过学习调整参数,你需要给与一个m样本的训练集,这会让你在训练集上找到参数w和参数b,来得到输出; 对于训练集的预测值,我们将它写成?,我们希望它会接近训练集中的y值; 关于符号(i)的注解:上标(i)来指明数据表示x或者y或者z或者其他数据的第i个训练样本;2、损失函数-----在单个训练样本中定义的,它衡量算法在单个训练样本中的表现...原创 2019-07-12 12:46:49 · 837 阅读 · 0 评论 -
第五篇: 逻辑回归(Logistic Regression)
1、应用场景: 该算法适用于二分类算法;2、Hypothesis Function(假设函数);3、实例:Cat vs No-Cat给定一个输入的特征向量x,用原创 2019-07-12 12:41:02 · 185 阅读 · 0 评论 -
第四篇: 二分类
1、在二分类中,输出的结果是离散型的;2、前向传播步骤:forward propagation step;方向传播步骤:backward propagation step;3、实例:Cat vs Non-Cat对应的特征向量:后续课程常用的符号:x:表示一个输入训练集y:表示输出结果,取值为(0,1);单独的样本:...原创 2019-07-11 13:10:54 · 527 阅读 · 0 评论 -
吴恩达--深度学习(Course1):第一周测验题
题目如下:原创 2019-07-10 13:35:49 · 456 阅读 · 0 评论 -
第三篇:用神经网络进行监督学习 深度学习为什么会兴起?
1、主要原因:a、大量的数据;b、算力的提升;c、算法的创新;2、次要原因:原创 2019-07-10 13:28:53 · 304 阅读 · 0 评论 -
第二篇:用神经网络进行监督学习
1、实例2、neural network example:3、Structured VS Unstructured dataa、Structured data :每个数据(特征)都有明确的定义,例如:b、Unstructured data:音频、图像、文本,例如:...原创 2019-07-10 13:24:06 · 1234 阅读 · 0 评论 -
第一篇:什么是神经网络?
1、神经网络:是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统,通俗的讲就是具备学习功能。现代神经网络是一种非线性统计性数据建模工具。2、例子:a、单一神经网络房价预测:简化模型:...原创 2019-06-22 17:30:32 · 493 阅读 · 0 评论