题目描述:
我们把只包含因子2、3和5的数称作丑数(Ugly Number)。求按从小到大的顺序的第1500个丑数。例如6、8都是丑数,但14不是,因为它包含因子7。习惯上我们把1当做第一个丑数。
分析:
完整代码:
class Solution {
public:
int GetUglyNumber_Solution(int index) {
if(index <= 0)
return 0;
int *UglyNumbers = new int[index];//第index个丑数下标为index-1
UglyNumbers[0] = 1;//1是最小的丑数
int nextUglyIndex = 1;//下一个要找的丑数在丑数表中下标
//初始化T2,T3,T5的地址,都是&UglyNumbers[0]
int *pMultiply2 = UglyNumbers;
int *pMultiply3 = UglyNumbers;
int *pMultiply5 = UglyNumbers;
//一直找,找完下标为index-1的,当nextUglyIndex=index时停止
while (nextUglyIndex < index) {
//min(T2,T3,T5)
int min = Min(*pMultiply2 * 2, *pMultiply3 * 3, *pMultiply5 * 5);
UglyNumbers[nextUglyIndex] = min;//就是下一个丑数
//更新下次T2(的地址):T2*2要刚好大过当前表中最大丑数
while (*pMultiply2 * 2 <= UglyNumbers[nextUglyIndex])
++pMultiply2;
//更新下次T3(的地址):T3*3要刚好大过当前表中最大丑数
while (*pMultiply3 * 3 <= UglyNumbers[nextUglyIndex])
++pMultiply3;
//更新下次T5(的地址):T5*5要刚好大过当前表中最大丑数
while (*pMultiply5 * 5 <= UglyNumbers[nextUglyIndex])
++pMultiply5;
++nextUglyIndex;//下次循环要找的丑数下标+1
}
//要找的丑数就是pUglyNumbers[index-1]
int ugly = UglyNumbers[nextUglyIndex - 1];
delete[] UglyNumbers;
return ugly;
}
private:
//三个数找最小
int Min(int num1, int num2, int num3) {
int min = (num1 < num2) ? num1 : num2;
return (min < num3) ? min : num3;
}
};