矩阵的秩最小化

为了求解问题

这里写图片描述

因为它是非凸的,我们求解一个它的近似算法

这里写图片描述

对于一个大的τ值,它可以用下列等式接近

这里写图片描述

其中第一项为核范式(奇异值的和),第二项为Frobenius范式。

  1. Singular Value Thresholding (SVT) 奇异值阈值

* 奇异值收缩(singular value shrinkage)*

首先我们考虑一个秩为r非负的。

对于每个τ0 的奇异值上,使它们趋于零。这也是为什么我们将其成为奇异值收缩(singular value shrinkage)的原因。

* Singular Value Thresholding (SVT) 奇异值阈值*

又因为奇异值收缩(singular value shrinkage)是核范式的近似操作(具体证明见[3]),因此上式可以转化为:
这里写图片描述

它的迭代方式为:
这里写图片描述

这个算法受到压缩感知中迭代算法的启发,在迭代过程中对矩阵进行SVD,然后将较小的奇异值设置为0,生成新的矩阵进行迭代。该算法运算速度快,对于高位低秩矩阵的恢复非常有效。

©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页