矩阵的秩最小化

本文深入探讨了奇异值阈值(SVT)算法,一种用于矩阵恢复的有效方法。该算法通过迭代过程,对矩阵进行奇异值分解(SVD),并设置较小的奇异值为零,实现对高位低秩矩阵的快速精确恢复。文章详细介绍了SVT算法的原理、迭代公式及其实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为了求解问题

这里写图片描述

因为它是非凸的,我们求解一个它的近似算法

这里写图片描述

对于一个大的τ值,它可以用下列等式接近

这里写图片描述

其中第一项为核范式(奇异值的和),第二项为Frobenius范式。

  1. Singular Value Thresholding (SVT) 奇异值阈值
* 奇异值收缩(singular value shrinkage)*

首先我们考虑一个秩为r非负的。

对于每个τ0 的奇异值上,使它们趋于零。这也是为什么我们将其成为奇异值收缩(singular value shrinkage)的原因。

* Singular Value Thresholding (SVT) 奇异值阈值*

又因为奇异值收缩(singular value shrinkage)是核范式的近似操作(具体证明见[3]),因此上式可以转化为:
这里写图片描述

它的迭代方式为:
这里写图片描述

这个算法受到压缩感知中迭代算法的启发,在迭代过程中对矩阵进行SVD,然后将较小的奇异值设置为0,生成新的矩阵进行迭代。该算法运算速度快,对于高位低秩矩阵的恢复非常有效。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值