计算机视觉
文章平均质量分 74
赵唯淞
哈尔滨工业大学 教授
展开
-
Programming Computer Vision with Python【学习笔记】【第一章】
第1章 基本的图像操作和处理1.1 PIL:Python图像处理类库1.1.1 转换图像格式——save()函数1.1.2 创建缩略图1.1.3 复制并粘贴图像区域1.1.4 调整尺寸和旋转1.2 Matplotlib库1.2.1 画图、描点和线1.2.2 图像轮廓和直方图1.2.3 交互式标注1.3 NumPy库1.3.1 图像数组表示1.3.2 灰度变换1.3.3 图像缩放1.3.4 直方图均...转载 2018-05-08 21:23:58 · 537 阅读 · 1 评论 -
计算机视觉整理
经典论文ImageNet分类 物体检测 物体跟踪 低级视觉 边缘检测 语义分割 视觉注意力和显著性 物体识别 人体姿态估计 CNN原理和性质(Understanding CNN) 图像和语言 图像解说 视频解说 图像生成微软ResNet论文:用于图像识别的深度残差网络作者:何恺明、张祥雨、任少卿和孙剑链接:http://arxiv.org/pdf/151...转载 2018-09-13 18:15:14 · 1373 阅读 · 0 评论 -
TensorFlow载入VGG并可视化每层
一、简介VGG网络在2014年的 ILSVRC localization and classification 两个问题上分别取得了第一名和第二名。VGG网络非常深,通常有16-19层,如果自己训练网络模型的话很浪费时间和计算资源。因此这里采用一种方法获取VGG19模型的模型数据,从而能够更快速的应用到自己的任务中来,本文在加载模型数据的同时,还可视化图片在网络传播过程中,每一层的输出特征...转载 2018-09-13 20:01:41 · 3665 阅读 · 3 评论 -
目标检测
基于深度学习的交通标志检测可以在这里找到代码。它可能比文章更新;目标使用简单的卷积神经网络对交通标志进行分类。机器学习想象一下,你需要建立一个识别手写体数字的程序。 这是5。但也可以说是3。 你会用什么规则来判断它是3还是5呢? 研究人员决定向计算机展示成千上万的例子,并试图通过经验来解决问题,而不是试图挑选所有规则并构建一个非常复杂的程序。这是机器学...原创 2018-09-24 13:45:23 · 1279 阅读 · 0 评论 -
Automatic Image Captioning【PyTorch】
Automatic Image Captioning using Deep Learning (CNN and LSTM) in PyTorchAutomatic Image Captioning using Deep Learning (CNN and LSTM) in PyTorchFaizan Shaikh,April 2, 2018 IntroductionDeep L...转载 2018-09-24 14:01:54 · 1092 阅读 · 2 评论 -
SIFT提取特征点
计算机视觉中的特征点提取算法比较多,但SIFT除了计算比较耗时以外,其他方面的优点让其成为特征点提取算法中的一颗璀璨的明珠。SIFT算法的介绍网上有很多比较好的博客和文章,我在学习这个算法的过程中也参看网上好些资料,即使评价比较高的文章,作者在文章中对有些比较重要的细节、公式来历没有提及,可能写博客的人自己明白,也觉得简单,因此就忽略了这些问题,但是对刚入门的人来说,看这些东西,想搞清楚这些...转载 2019-11-19 16:57:19 · 1553 阅读 · 0 评论 -
Densely CNN
《Densely Connected Convolutional Networks》阅读笔记代码地址:https://github.com/liuzhuang13/DenseNet首先看一张图:稠密连接:每层以之前层的输出为输入,对于有L层的传统网络,一共有L个连接,对于DenseNet,则有L(L+1)2。这篇论文主要参考了Highway Networks,Residual Netw...原创 2018-09-24 16:02:49 · 940 阅读 · 0 评论 -
FCN【一】
【原文图】“Fully convolutional networks for semantic segmentation.”上图中,32x即为扩大32倍" /><link href="https://csdnimg.原创 2018-09-24 16:16:36 · 2164 阅读 · 0 评论 -
PSPNet
Pyramid Scene Parsing Network收录:CVPR 2017 (IEEE Conference on Computer Vision and Pattern Recognition)原文地址: PSPNet代码:pspnet-githubKerastensorflow效果图:Abstract本文提出的金字塔池化模块( pyramid pooling ...原创 2018-09-26 12:24:00 · 6818 阅读 · 0 评论 -
目标跟踪之相关滤波
一. 何为相关滤波? Correlation Filter 最早应用于信号处理,用来描述两个信号之间的相关性,或者说相似性(有点像早期的概率密度),先来看定义: 对于两个数据 f 和 g,则两个信号的相关性(correlation)为: 其中 f∗ 表示 f 的 复共轭,这是和卷积的区别(相关性 与 卷积 类似,区别就在于...转载 2018-09-27 17:56:02 · 33479 阅读 · 7 评论 -
总结各类损失函数【修】
损失函数损失函数(Loss function)是用来估量你模型的预测值f(x)f(x)f(x)与真实值 yyy 的不一致程度,它是一个非负实值函数,通常用 L(y,f(x))L(y,f(x))L(y,f(x))来表示。损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数的重要组成部分。模型的风险结构包括了风险项和正则项,通常如下所示:θ∗=argmin∑i=1N...原创 2019-01-23 19:05:49 · 3329 阅读 · 2 评论 -
Active Contour Models 主动轮廓模型
《Matlab图像处理》part1 Snakes:Active Contour Models 主动轮廓模型参考博客:数字图像处理-图像分割:Snake主动轮廓模型 Matlab代码及运行结果简介在“图像分割之(一)概述”中咱们简单了解了目前主流的图像分割方法。下面咱们主要学习下基于能量泛函的分割方法。这里学习下Snake模型简单的知识,Level Set(水平集)模型会在后面的博文中...转载 2019-06-14 19:01:41 · 12384 阅读 · 0 评论 -
目标跟踪【更新中...】
最近需要跟踪clathrin CCP的运动与半径,所以调研了一下多目标跟踪的方法:首先总结一下基本工作流:1.分割图像,将图像转为二值化样本,分割方法有太多了,根据情况而定,暂时定位分水岭分割:https://imagej.net/Interactive_Watershedhttps://scikit-image.org/docs/dev/auto_examples/segment...原创 2019-06-14 20:35:19 · 998 阅读 · 0 评论 -
图像领域深度学习的七个境界
用深度学习玩图像的七重关卡许铁-巡洋舰科技2 天前第一个重境界: 图像识别 如果你开始了解深度学习的图像处理, 你接触的第一个任务一定是图像识别 :比如把你的爱猫输入到一个普通的CNN网络里, 看看它是喵咪还是狗狗。 一个最普通的CNN, 比如像这样几层的CNN鼻祖Lenet, 如果你有不错的数据集(比如kaggle猫狗大战)都可以给出一个还差强人意的分类结...转载 2018-09-16 11:26:46 · 7645 阅读 · 1 评论 -
SENET——imageNet冠军解读
我是Momenta高级研发工程师胡杰,很高兴可以和大家分享我们的SENet。借助我们提出 SENet,我们团队(WMW)以极大的优势获得了最后一届ImageNet 2017竞赛 Image Classification任务的冠军,并被邀请在CVPR 2017的workshop(Beyond ImageNet)中给出算法介绍。下面我将介绍我们提出的SENet,论文和代码会在近期公布在arXi...转载 2018-09-16 10:46:12 · 1365 阅读 · 0 评论 -
Hough 圆变换----Matlab实现
霍夫变换(Hough)是一个非常重要的检测间断点边界形状的方法。它通过将图像坐标空间变换到参数空间,来实现直线与曲线的拟合。参数空间可以表示为(a,b,r),图像坐标空间中的一个圆对应参数空间中的一个点。 A(a,b,r)。计算过程是让a,b在取值范围内增加,解出满足上式的r值,每计算出一个(a,...原创 2018-04-24 22:31:10 · 11936 阅读 · 6 评论 -
深度学习与机器视觉
人工智能是人类一个非常美好的梦想,跟星际漫游和长生不老一样。我们想制造出一种机器,使得它跟人一样具有一定的对外界事物感知能力,比如看见世界。在上世纪50年代,数学家图灵提出判断机器是否具有人工智能的标准:图灵测试。即把机器放在一个房间,人类测试员在另一个房间,人跟机器聊天,测试员事先不知道另一房间里是人还是机器 。经过聊天,如果测试员不能确定跟他聊天的是人还是机器的话,那么图灵测试就通过了,也就是...转载 2018-05-03 14:36:28 · 21825 阅读 · 1 评论 -
计算机视觉综述
计算机视觉入门系列(一) 综述自大二下学期以来,学习计算机视觉及机器学习方面的各种课程和论文,也亲身参与了一些项目,回想起来求学过程中难免走了不少弯路和坎坷,至今方才敢说堪堪入门。因此准备写一个计算机视觉方面的入门文章,一来是时间长了以后为了巩固和温习一下所学,另一方面也希望能给新入门的同学们介绍一些经验,还有自然是希望各位牛人能够批评指正不吝赐教。由于临近大四毕业,更新的时间难以保证,这个系列除...转载 2018-05-03 14:39:45 · 4129 阅读 · 0 评论 -
模式识别与机器学习 (Pattern Recognization and Maching Learning)(PRML) 总结
Bishop 的《模式识别与机器学习》(Pattern Recognization and Maching Learning),简称为PRML,被认为是贝叶斯方法的扛鼎之作。在科研之余,花了半年时间,我现在算是把这本书通读了一遍并且也把各个章节的习题几乎完成了一遍,各章练习题解答可见我的博客-练习题解答,各章章节小结可见我的博客-章节小结。作为看完这本书最后一个环节,我想为我看完这本书做一个总结。...转载 2018-05-03 14:41:13 · 2719 阅读 · 0 评论 -
Zernike函数拟合曲面--MATLAB实现
利用前36阶zernike函数拟合曲面:脚本程序clc;clear;load unwrap_ph.matunwrap_ph=max(max(unwrap_ph))-unwrap_ph;unwrap_ph=unwrap_ph(:,81:560);x=linspace(-1,1,size(unwrap_ph,1));y=linspace(-1,1,size(unwrap_ph,2)...原创 2018-05-18 23:33:05 · 24453 阅读 · 65 评论 -
【计算机视觉】【车辆识别】--Matlab实现
希望利用计算机自动计算出停车场车辆数目:这里由于没有参考背景图,只有这一张,所以我采用的是对图像二值化,腐蚀膨胀,并且对白车、棕车、黑车各有一个阈值,之后计算图像域数量,则分别可以得到白车、黑车、棕车的数量,加在一起则是总数量,这里得到的结果是11.5辆。clc;clear allI=imread('D:/作业1.png');G=rgb2gray(I);% G=histeq(G);H=...原创 2018-05-18 23:41:30 · 7763 阅读 · 2 评论 -
【计算机视觉】【矿泉水瓶水位测量】--Matlab与C++实现
对水瓶水位的标定,主要运用二值化与检查对比度的方法:Matlab程序:clc;clear allI=imread('D:\14.jpg');G=rgb2gray(I); [a,b]=size(G);G1=histeq(G);imwrite((G),'14.1.bmp');%%%%%%%%%%%读取直方图向量H=imhist(G);%自编写直方图均衡化H=H./(a*b);HH...原创 2018-05-18 23:47:20 · 3582 阅读 · 5 评论 -
MNIST手写数字识别【Matlab神经网络工具箱】
MNIST手写数字识别Matlab代码:%Neural Networks Codes will be run on this parttic%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%clcclear allpic1=imread('8.png');pic1=rgb2gray(pi...原创 2018-05-18 23:51:33 · 10916 阅读 · 19 评论 -
马尔科夫随机场之图像分割【二】
由于经常有读者说运行出错,我又本地校准了下程序,由于版权限制,lena图MATLAB新版已经撤除了,这里改成了cameraman的图参考:http://blog.csdn.net/on2way/article/details/47307927从贝叶斯理论到图像马尔科夫随机场刘伟强等;基于马尔科夫随机场的遥感图像分割和描述;东南大学学报;(29):11-15,1999version:2...转载 2018-07-01 21:59:28 · 19969 阅读 · 39 评论 -
图像分割综述【深度学习方法】
CNN图像语义分割基本上是这个套路:下采样+上采样:Convlution + Deconvlution/Resize多尺度特征融合:特征逐点相加/特征channel维度拼接获得像素级别的segement map:对每一个像素点进行判断类别即使是更复杂的DeepLab v3+依然也是这个基本套路。图13 DeepLab v3+Image Segmentation(图像分割)网络结构比较网络 父辈生辰...转载 2018-07-06 21:40:41 · 77166 阅读 · 33 评论 -
[RCNN]-[YOLO]-[SSD]目标检测算法
原文链接:http ://chuansong.me/n/353443351445 转载自深度学习大讲堂公众号 开始本文内容之前,我们先来看一下上边左侧的这张图,从图中你看到了什么物体?他们在什么位置?这还不简单,图中有一个猫和一个人,具体的位置就是上图右侧图像两个边框(bounding-box)所在的位置。其实刚刚的这个过程就是目标检测,目标检测就是“给定一张图像或者视频帧,找出其中所有目标的...转载 2018-08-05 13:43:07 · 2532 阅读 · 0 评论 -
Lukas-Kanade光流法
光流是图像亮度的运动信息描述。光流法计算最初是由Horn和Schunck于1981年提出的,创造性地将二维速度场与灰度相联系,引入光流约束方程,得到光流计算的基本算法.光流计算基于物体移动的光学特性提出了2个假设:①运动物体的灰度在很短的间隔时间内保持不变;②给定邻域内的速度向量场变化是缓慢的。算法原理假设图像上一个像素点(x,y),在t时刻的亮度为E(x+Δx,y+Δy,t+Δt)...原创 2018-08-24 17:50:37 · 763 阅读 · 0 评论 -
深度学习【目标检测】
开始本文之前,我们首先看上方给出的3张图片,它们分别是同一个视频的第1,40,80帧。在第1帧给出一个跑步者的边框(bounding-box)之后,后续的第40帧,80帧,bounding-box依然准确圈出了同一个跑步者。以上展示的其实就是目标跟踪(visual object tracking)的过程。目标跟踪(特指单目标跟踪)是指:给出目标在跟踪视频第一帧中的初始状态(如位置,尺寸),自动...转载 2018-08-31 21:59:51 · 4780 阅读 · 0 评论 -
Kmeans++及字典学习
1. Kmeans++Kmeans 中对聚类中心的初始化比较敏感,不同的初始值会带来不同的聚类结果,这是因为 Kmeans 仅仅是对目标函数求近似最优解,不能保证得到全局最优解。在常规的 Kmeans 中,聚类中心的初始化都采用随机初始化的方式,这样会存在一个问题:如果数据在某个部分较密集,那么产生的随机数会以更高的概率靠近这些数据。例如,假设输入数据为: [0.8,0.85,0.9,0....转载 2019-06-14 20:37:58 · 1421 阅读 · 0 评论