描述
有关二叉树的问题很多情况都能转化成树的遍历问题,特别地,二叉搜索树的中序遍历就是其节点值的非降序序列。
昨天一道二叉搜索树中序遍历的问题,思路很清晰!!!明明很简单的一道题,但代码就是写不对!遇到各种问题!只有你想不到的BUG没有它报不出的BUG,所以今天先把模板放在这!要非常熟悉才可以,并且根据经验,二叉树的遍历函数定义时最好不要有返回值,即返回值最好为void(如果需要返回参数值,可以将直接赋值给一个全局变量,或者赋值给一个传进来的非全局变量的引用或指针参数),否则一不小心就会被返回值给搞蒙!!!
前序遍历(即根节点访问在前):树中的每棵子树访问次序都为:根节点->左节点->右节点
中序遍历(即根节点访问在中):树中的每棵子树访问次序都为:左节点->根节点->右节点
后序遍历(即根节点访问在后):树中的每棵子树访问次序都为:左节点->右节点->根节点
代码
#include<iostream>
using namespace std;
struct TreeNode { //树节点的定义
int val;
struct TreeNode *left;
struct TreeNode *right;
TreeNode(int x) :
val(x), left(NULL), right(NULL) {
}
};
/*************************前序遍历******************************/
void Preorder(TreeNode* pRoot) {
if (pRoot == NULL)
return;
cout << pRoot->val << ' '; //应用时换成对节点的相应操作即可,这里以打印节点的值为例
Preorder(pRoot->left);
Preorder(pRoot->right);
}
/*************************中序遍历******************************/
void Inorder(TreeNode* pRoot) {
if (pRoot == NULL)
return;
Inorder(pRoot->left);
cout << pRoot->val << ' '; //应用时换成对节点的相应操作即可,这里以打印节点的值为例
Inorder(pRoot->right);
}
/*************************后序遍历******************************/
void Postorder(TreeNode* pRoot) {
if (pRoot == NULL)
return;
Postorder(pRoot->left);
Postorder(pRoot->right);
cout << pRoot->val << ' '; //应用时换成对节点的相应操作即可,这里以打印节点的值为例
}
代码说明
一:此代码可直接当做模板来用,应用时直接将打印节点换成对节点的相应操作即可
二:函数的返回值(最好)为void,否则极易出错!!!
下一篇讲一下此模板的经典应用,也是最开始把我干蒙B的一道非常简单的题,也可能我的递归能力不到家!!!
找时间再总结下树的层次遍历!!