数据压缩读书笔记——线性代数的几何意义(六)

第五章 矩阵的几何意义

  在线性空间中如果确定了一个基,线性映射就可以用确定的矩阵来表示,这就是矩阵的几何意义:线性空间上的线性映射。

5.1 矩阵与向量的乘法的几何意义

  矩阵与向量乘积比如 A x ⇀ A\stackrel{\rightharpoonup}{x} Ax表现为矩阵 A A A对一个向量 x ⇀ \stackrel{\rightharpoonup}{x} x作用的结果。其作用的主要过程是对一个向量进行旋转和缩放的综合过程(即线性变换的过程),一个向量就变换为一个向量。

向量组的线性表示的几何解释就是把矩阵 A A A的列向量进行伸缩变换后首尾相连得到一个新向量。

旋转矩阵对向量的乘积的几何解释

  一个矩阵乘以一个向量,一般将会对向量的几何图形进行旋转和伸缩变化。旋转矩阵只对向量进行旋转变化而没有伸缩变换。
A = ( c o s θ − s i n θ s i n θ c o s θ ) A=\begin{pmatrix} cos\theta&-sin\theta\\sin\theta&cos\theta\end{pmatrix} A=(cosθsinθsinθcosθ)

5.2 矩阵与线性变换的关系的几何意义

任意一个矩阵其本身蕴含着一个变换。这个变换我们可以称为一个矩阵变换。

  一个矩阵变换必然是一个线性变换,两者具有一一对应的关系。

  • 线性变换的和对应着矩阵的和
  • 线性变换的乘积对应着矩阵的乘积
  • 线性变换的数量乘积对应着矩阵的数量乘积
  • 线性变换的逆对应着矩阵的逆

相关文章

数据压缩读书笔记——线性代数的几何意义(一)
数据压缩读书笔记——线性代数的几何意义(二)
数据压缩读书笔记——线性代数的几何意义(三)
数据压缩读书笔记——线性代数的几何意义(四)
数据压缩读书笔记——线性代数的几何意义(五)

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值