洛谷P4783 (高斯消元求矩阵的逆 模板)

/**
    高斯消元矩阵求逆
**/
#include <cstdio>
#include <stack>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
#include <map>
#include <vector>
#include <queue>
#include <set>
#define eps 1e-8
typedef long long ll;
const double PI = acos(-1.0);
const int maxn = 1005;
const int INF = 0x3f3f3f;
const ll mod = 1e9+7;
const ll linf = 0x3f3f3f3f3f3f3f3f;
using namespace std;
int n,m;
ll f[maxn][maxn];
ll r,ret;
ll ksm(ll a, ll b)//求逆元
{
    ret = 1;
    while(b)
    {
        if(b&1)
            ret = ret*a%mod;
        a = a*a%mod;
        b >>= 1;
    }
    return ret;
}
int main()
{
    scanf("%d",&n);
    m = n*2;
    for(int i = 1; i<=n; i++)
    {
        for(int j = 1; j<=n; j++)
        {
            scanf("%lld",&f[i][j]);
        }
        f[i][n+i] = 1;
    }
    //高斯消元模板
    for(int i = 1; i<=n; i++)
    {
        for(int j = i; j<=n; j++)
        {
            //找到xi的系数不为0的一个方程
            if(f[j][i])
            {
                for(int k = 1; k<=m; k++)
                    swap(f[i][k],f[j][k]);
                break;
            }
        }
        if(!f[i][i])
        {
            cout<<"No Solution"<<endl;
            return 0;
        }
        r = ksm(f[i][i],mod-2);
        //将该方程的xi的系数变为1
        for(int j = i; j<=m; j++)
            f[i][j] = f[i][j]*r%mod;
        //消去其他方程的xi的系数
        for(int j = 1; j<=n; j++)
        {
            if(j != i)
            {
                for(int k = i; k<=m; k++)
                    f[j][k] = (f[j][k] - f[j][i]*f[i][k]%mod + mod)%mod;
            }
        }
    }
        for(int i = 1; i<=n; i++)
        {
            for(int j = n+1; j<=m; j++)
                cout<<f[i][j]<<" ";
            cout<<endl;
        }

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值