在电商数据采集场景中,验证码是网站反爬体系的重要屏障。常见的图文验证码与滑动验证码,分别通过 “文字识别障碍” 和 “行为真实性验证” 拦截机器爬虫。本文将拆解两种验证码的核心逻辑,结合 Python 工具库提供可落地的破解方案,同时探讨反反爬的关键技巧。
一、图文验证码:从 “干扰识别” 到 “精准提取”
图文验证码通过在文字中叠加噪点、干扰线、扭曲变形等元素,阻碍机器直接识别。破解核心是先预处理图像去除干扰,再通过 OCR 技术提取文字。
1. 核心原理与破解流程
电商网站的图文验证码多为 “固定背景 + 随机文字 + 动态干扰” 结构,破解需 3 步:
- 图像预处理:去噪(删除孤立噪点)、二值化(将图像转为黑白对比)、去干扰线(消除横纵线条);
- 文字定位:分割验证码中的单个字符(若为多字符组合);
- OCR 识别:通过光学字符识别技术将图像文字转为文本。
2. 适配 Python 库
| 库名称 |
功能用途 |
安装命令 |
| Pillow(PIL) |
基础图像处理(裁剪、二值化) |
pip install pillow |
| OpenCV-python |
高级图像预处理(去噪、边缘检测) |
pip install opencv-python |
| pytesseract |
OCR 识别(基于 Tesseract 引擎) |
pip install pytesseract |
| matplotlib |
图像可视化(调试用) |
pip install matplotlib |
注意:pytesseract需依赖 Tesseract 引擎,需单独安装(Windows:下载安装包并配置环境变量;Linux:sudo apt-get install tesseract-ocr)。
电商验证码破解方法解析


最低0.47元/天 解锁文章
1309

被折叠的 条评论
为什么被折叠?



