第六十一题:
给定一棵二叉搜索树,请找出其中的第k小的结点。例如, (5,3,7,2,4,6,8) 中,按结点数值大小顺序第三小结点的值为4。
思路:
代码:
/*
public class TreeNode {
int val = 0;
TreeNode left = null;
TreeNode right = null;
public TreeNode(int val) {
this.val = val;
}
}
*/
//思路:二叉搜索树按照中序遍历的顺序打印出来正好就是排序好的顺序。
// 所以,按照中序遍历顺序找到第k个结点就是结果。
public class Solution {
int index = 0; //计数器
TreeNode KthNode(TreeNode root, int k)
{
if(root != null){ //中序遍历寻找第k个
TreeNode node = KthNode(root.left,k);
if(node != null)
return node;
index ++;
if(index == k)
return root;
node = KthNode(root.right,k);
if(node != null)
return node;
}
return null;
}
}
------------------------------------------------------------------------可爱的分界线-------------------------------------------------------------------------------
第六十二题:
如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。
前言:Java的PriorityQueue 是从JDK1.5开始提供的新的数据结构接口,默认内部是自然排序,结果为小顶堆,也可以自定义排序器,比如下面反转比较,完成大顶堆。
思路:
为了保证插入新数据和取中位数的时间效率都高效,这里使用大顶堆+小顶堆的容器,并且满足:
1、两个堆中的数据数目差不能超过1,这样可以使中位数只会出现在两个堆的交接处;
2、大顶堆的所有数据都小于小顶堆,这样就满足了排序要求
代码:
import java.util.*;
public class Solution {
private int count = 0;
private PriorityQueue<Integer> minHeap = new PriorityQueue<>();
private PriorityQueue<Integer> maxHeap = new PriorityQueue<Integer>(15, new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o2 - o1;
}
});
public void Insert(Integer num) {
if (count %2 == 0) {//当数据总数为偶数时,新加入的元素,应当进入小根堆
//(注意不是直接进入小根堆,而是经大根堆筛选后取大根堆中最大元素进入小根堆)
//1.新加入的元素先入到大根堆,由大根堆筛选出堆中最大的元素
maxHeap.offer(num);
int filteredMaxNum = maxHeap.poll();
//2.筛选后的【大根堆中的最大元素】进入小根堆
minHeap.offer(filteredMaxNum);
} else {//当数据总数为奇数时,新加入的元素,应当进入大根堆
//(注意不是直接进入大根堆,而是经小根堆筛选后取小根堆中最大元素进入大根堆)
//1.新加入的元素先入到小根堆,由小根堆筛选出堆中最小的元素
minHeap.offer(num);
int filteredMinNum = minHeap.poll();
//2.筛选后的【小根堆中的最小元素】进入大根堆
maxHeap.offer(filteredMinNum);
}
count++;
}
public Double GetMedian() {
if (count %2 == 0) {
return new Double((minHeap.peek() + maxHeap.peek())) / 2;
} else {
return new Double(minHeap.peek());
}
}
}
------------------------------------------------------------------------可爱的分界线-------------------------------------------------------------------------------
第六十三题:
给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值。例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6,6,6,5}; 针对数组{2,3,4,2,6,2,5,1}的滑动窗口有以下6个: {[2,3,4],2,6,2,5,1}, {2,[3,4,2],6,2,5,1}, {2,3,[4,2,6],2,5,1}, {2,3,4,[2,6,2],5,1}, {2,3,4,2,[6,2,5],1}, {2,3,4,2,6,[2,5,1]}。
思路:
用一个双端队列,队列第一个位置保存当前窗口的最大值,当窗口滑动一次
1.判断当前最大值是否过期
2.新增加的值从队尾开始比较,把所有比他小的值丢掉
代码:
import java.util.*;
public class Solution {
public ArrayList<Integer> maxInWindows(int [] num, int size)
{
ArrayList<Integer> res = new ArrayList<>();
if(size == 0) return res;
int begin;
ArrayDeque<Integer> q = new ArrayDeque<>();
for(int i = 0; i < num.length; i++){
begin = i - size + 1;
if(q.isEmpty())
q.add(i);
else if(begin > q.peekFirst())
q.pollFirst();
while((!q.isEmpty()) && num[q.peekLast()] <= num[i])
q.pollLast();
q.add(i);
if(begin >= 0)
res.add(num[q.peekFirst()]);
}
return res;
}
}
------------------------------------------------------------------------可爱的分界线-------------------------------------------------------------------------------
第六十四题:
请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则之后不能再次进入这个格子。 例如 a b c e s f c s a d e e 这样的3 X 4 矩阵中包含一条字符串"bcced"的路径,但是矩阵中不包含"abcb"路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入该格子。
思路:用一个状态数组保存之前访问过的字符,然后再分别按上,下,左,右递归
代码:
public class Solution {
public boolean hasPath(char[] matrix, int rows, int cols, char[] str) {
int flag[] = new int[matrix.length];
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
if (helper(matrix, rows, cols, i, j, str, 0, flag))
return true;
}
}
return false;
}
private boolean helper(char[] matrix, int rows, int cols, int i, int j, char[] str, int k, int[] flag) {
int index = i * cols + j;
if (i < 0 || i >= rows || j < 0 || j >= cols || matrix[index] != str[k] || flag[index] == 1)
return false;
if(k == str.length - 1) return true;
flag[index] = 1;
if (helper(matrix, rows, cols, i - 1, j, str, k + 1, flag)
|| helper(matrix, rows, cols, i + 1, j, str, k + 1, flag)
|| helper(matrix, rows, cols, i, j - 1, str, k + 1, flag)
|| helper(matrix, rows, cols, i, j + 1, str, k + 1, flag)) {
return true;
}
flag[index] = 0;
return false;
}
}
------------------------------------------------------------------------可爱的分界线-------------------------------------------------------------------------------
第六十五题:
地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?
思路:
代码:
public class Solution {
public int movingCount(int threshold, int rows, int cols) {
int flag[][] = new int[rows][cols]; //记录是否已经走过
return helper(0, 0, rows, cols, flag, threshold);
}
private int helper(int i, int j, int rows, int cols, int[][] flag, int threshold) {
if (i < 0 || i >= rows || j < 0 || j >= cols || numSum(i) + numSum(j) > threshold || flag[i][j] == 1) return 0;
flag[i][j] = 1;
return helper(i - 1, j, rows, cols, flag, threshold)
+ helper(i + 1, j, rows, cols, flag, threshold)
+ helper(i, j - 1, rows, cols, flag, threshold)
+ helper(i, j + 1, rows, cols, flag, threshold)
+ 1;
}
private int numSum(int i) {
int sum = 0;
do{
sum += i%10;
}while((i = i/10) > 0);
return sum;
}
}
------------------------------------------------------------------------可爱的分界线-------------------------------------------------------------------------------