Python爬虫——爬取bilibili中的视频

爬取bilibili中的视频

在这里插入图片描述

  • 本次爬取,还是运用的是requests方法

  • 首先进入bilibili官网中,选取你想要爬取的视频,进入视频播放页面,按F12,将网络中的名称栏向上拉找到第一个并点击,可以在标头中,找到后续我们想要的一些信息。
    在这里插入图片描述

  • 爬取视频的步骤大致分为

    • 1、UA伪装
    • 2、获取url
    • 3、发送请求
    • 4、获取响应的数据
    • 5、数据解析
      • 获取存放视频和音频数据的"window.playinfo"文本内容
      • 分别获取视频和音频的url
      • 将获取到的视频和音频数据存放在两个不同的文件中
  • UA伪装

    • 找到Cookie并复制—>用户登陆此网站的个人Cookie信息,每个人的都不同
    • 找到Referer并复制—>每个网站的防盗链
    • 找到User-Agent并复制—>标头的最下面
      在这里插入图片描述
      在这里插入图片描述
      # UA伪装
          head = {
              "User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36 Edg/127.0.0.0"
              # 防盗链子
              , "Referer":"https://www.bilibili.com/"
              ,
              "Cookie":"CURRENT_FNVAL=4048; buvid3=BE2D386A-BBCB-E06E-8C2B-F5223B4C8BC517591infoc; b_nut=1721567317; _uuid=67165DF10-7B77-BDE8-3C63-732C2FCAF4D520375infoc; enable_web_push=DISABLE; buvid4=0245F01B-6C4B-CD5A-2EC5-BC060EC0777D18433-024072113-zRTpkL0r94scQqxGfSYKhQ%3D%3D; home_feed_column=5; header_theme_version=CLOSE; rpdid=|(Y|RJRR)Y~0J'u~kulY~Rkk; DedeUserID=1611307689; DedeUserID__ckMd5=b0865dba0b3ced5b; buvid_fp_plain=undefined; is-2022-channel=1; b_lsid=D8542F24_191412D93C0; bsource=search_bing; bmg_af_switch=1; bmg_src_def_domain=i1.hdslb.com; browser_resolution=1659-943; bili_ticket=eyJhbGciOiJIUzI1NiIsImtpZCI6InMwMyIsInR5cCI6IkpXVCJ9.eyJleHAiOjE3MjM2MzQ1OTMsImlhdCI6MTcyMzM3NTMzMywicGx0IjotMX0.Ox8rnEpQH5i1H_wQfH2z5CzZC0y8PlqQCy1KVa8XEfQ; bili_ticket_expires=1723634533; SESSDATA=f567fef6%2C1738927393%2C5d207%2A82CjAh2pSUKwDLr1XiI6ncU5B6NXEfWKS7ES6mDC8yGxM6aT3-BTdvK0KAlYpMhCXtEXgSVkl2aTlQWUNacTZOZ0ZNXzJwZ21QT2ozMXFXcWtFc1FpNnBIWlNWbml2Y3BxNV80bUNMZTBVN1dyb3h0STU1ZklDM0MwckJvanRmTmNkeTBFcW5qYl9RIIEC; bili_jct=8d788bcb503d69ba2ded7dfbb53f6e58; sid=71po5kkf; fingerprint=0c7279b7c69b9542a76b8d9df9b7872a; buvid_fp=BE2D386A-BBCB-E06E-8C2B-F5223B4C8BC517591infoc; bp_t_offset_1611307689=964382000909647872"
          }
      
           
           
  • 获取url

    • 可以在标头中看到请求URL
      在这里插入图片描述

      # 指定url 自定义一个变量接收
          url = "https://www.bilibili.com/video/BV17w4m1e7PT/?spm_id_from=333.1007.tianma.1-1-1.click&vd_source=2a6e427465a2f829272f5863986dfa80"
      
           
           
  • 发送请求

    • 可以在标头中看到请求方式,这里的请求方式是GET方法
      在这里插入图片描述
      # 发送请求,这里的请求方式是get方法
      response = requests.get(url, headers = head)
      
           
           
  • 获取响应的数据

    • 这里使用requests中的response.text方法
      # 获取响应的数据
      res_text = response.text
      
           
           
      <
  • 数据解析

    • 使用 lxml 库中的 etree 方法

    • 并将获取到的数据写入到一个html的文件中,进入这个文件可以通过浏览器打开,查看是否是我们将要获取视频的页面

      tree = etree.HTML(res_text)
      with open("bili2.html", "w", encoding="utf-8") as f:
          f.write(res_text)
      
           
           
    • 获取存放视频和音频数据的"window.–playinfo–"文本内容

      • 因为视频和音频的数据都存在window.–playinfo–中,因此我们需要在元素栏下通过标签定位到它,但是我们只需要其内容

      • 因为window.–playinfo–的内容是一个大json字符串,所以我们可以通过json.loads的方法将它变成一个字典,方便后面通过键来取视频和音频的数据
        在这里插入图片描述

        base_info = "".join(tree.xpath("/html/head/script[4]/text()"))[20:]
        info_dict = json.loads(base_info)
        
               
               
    • 分别获取视频和音频的url

      • 在元素栏中可以看出window.–playinfo–的内容太多了,不利于我们寻找视频和音频的数据,我们可以在网络栏下,名称中第一个数据的响应中也可以找到,耐心一点向下慢慢通过标签找到window.–playinfo–,再在其中找到视频和音频的baseUrl

      • 获取后,再次通过get请求方式,发送请求

      • 注意:图片,视频和音频都是二进制内容,所以用content属性获取
        在这里插入图片描述
        在这里插入图片描述
        在这里插入图片描述

        video_url = info_dict["data"]["dash"]['video'][0]["baseUrl"]
        audio_url = info_dict["data"]["dash"]['audio'][0]["baseUrl"]
        video_content = requests.get(video_url, headers=head).content
        audio_content = requests.get(audio_url, headers=head).content
        
               
               
  • 最后将获取到的视频和音频的数据分别存放在两个不同的文件中,视频可以是MP4或者是wmv格式,音频是MP4格式

with open("video2.wmv", "wb") as f:
	f.write(video_content)
with open("audio2.mp4", "wb") as fp:
	fp.write(audio_content)

 
 
  • 完整代码
import requests
from lxml import etree
import json
if __name__ == '__main__':
    # UA伪装
    head = {
        "User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36 Edg/127.0.0.0"
        # 防盗链子
        , "Referer":"https://www.bilibili.com/"
        ,
        "Cookie":"CURRENT_FNVAL=4048; buvid3=BE2D386A-BBCB-E06E-8C2B-F5223B4C8BC517591infoc; b_nut=1721567317; _uuid=67165DF10-7B77-BDE8-3C63-732C2FCAF4D520375infoc; enable_web_push=DISABLE; buvid4=0245F01B-6C4B-CD5A-2EC5-BC060EC0777D18433-024072113-zRTpkL0r94scQqxGfSYKhQ%3D%3D; home_feed_column=5; header_theme_version=CLOSE; rpdid=|(Y|RJRR)Y~0J'u~kulY~Rkk; DedeUserID=1611307689; DedeUserID__ckMd5=b0865dba0b3ced5b; buvid_fp_plain=undefined; is-2022-channel=1; b_lsid=D8542F24_191412D93C0; bsource=search_bing; bmg_af_switch=1; bmg_src_def_domain=i1.hdslb.com; browser_resolution=1659-943; bili_ticket=eyJhbGciOiJIUzI1NiIsImtpZCI6InMwMyIsInR5cCI6IkpXVCJ9.eyJleHAiOjE3MjM2MzQ1OTMsImlhdCI6MTcyMzM3NTMzMywicGx0IjotMX0.Ox8rnEpQH5i1H_wQfH2z5CzZC0y8PlqQCy1KVa8XEfQ; bili_ticket_expires=1723634533; SESSDATA=f567fef6%2C1738927393%2C5d207%2A82CjAh2pSUKwDLr1XiI6ncU5B6NXEfWKS7ES6mDC8yGxM6aT3-BTdvK0KAlYpMhCXtEXgSVkl2aTlQWUNacTZOZ0ZNXzJwZ21QT2ozMXFXcWtFc1FpNnBIWlNWbml2Y3BxNV80bUNMZTBVN1dyb3h0STU1ZklDM0MwckJvanRmTmNkeTBFcW5qYl9RIIEC; bili_jct=8d788bcb503d69ba2ded7dfbb53f6e58; sid=71po5kkf; fingerprint=0c7279b7c69b9542a76b8d9df9b7872a; buvid_fp=BE2D386A-BBCB-E06E-8C2B-F5223B4C8BC517591infoc; bp_t_offset_1611307689=964382000909647872"
    }
    # 1、指定url
    url = "https://www.bilibili.com/video/BV17w4m1e7PT/?spm_id_from=333.1007.tianma.1-1-1.click&vd_source=2a6e427465a2f829272f5863986dfa80"
    # 2、发送请求
    response = requests.get(url, headers = head)
    # 3、获取响应的数据
    res_text = response.text
    # 4、数据解析
    tree = etree.HTML(res_text)
    with open("bili2.html", "w", encoding="utf-8") as f:
        f.write(res_text)
    base_info = "".join(tree.xpath("/html/head/script[4]/text()"))[20:]
    info_dict = json.loads(base_info)
    video_url = info_dict["data"]["dash"]['video'][0]["baseUrl"]
    audio_url = info_dict["data"]["dash"]['audio'][0]["baseUrl"]
    video_content = requests.get(video_url, headers=head).content
    audio_content = requests.get(audio_url, headers=head).content
    with open("video2.wmv", "wb") as f:
        f.write(video_content)
    with open("audio2.mp4", "wb") as fp:
        fp.write(audio_content)

 
 
  • 注意!!!注意!!!注意!!!
  • 获取到的是视频和音频两个文件,所以播放时也只能分开播放,也有方法可以将其合并,但是比较繁琐,可以先通过这种方法获取视频练一练,后期再学习合并的方法。
  • 其实有一种很简单的方法就是将这两个文件,放到剪映中合并,效果也是一样的
    在这里插入图片描述
### 如何使用 Python 编写爬虫抓取 B 视频数据 #### 准备工作 为了实现这一目标,需要安装一些必要的库。这些库可以帮助处理 HTTP 请求、解析 JSON 数据以及管理异步操作。 ```bash pip install requests aiohttp bilibili-api-python ``` #### 抓取视频基本信息 通过调用 `bilibili-api` 库中的接口方法可以直接获取到指定 AV/BV 号的视频详情: ```python from bilibili_api import video as bvid_video, sync def fetch_basic_info(bv_id): v = bvid_video.Video(bvid=bv_id) info_dict = sync(v.get_info()) title = info_dict['title'] pub_date = info_dict['pubdate'] # 时间戳形式返回发布时间 return { "标题": title, "发布时间": pub_date } ``` 此部分代码利用了第三方封装好的 API 接口来简化请求过程[^1]。 #### 获取弹幕列表 针对每一条视频记录其对应的 XML 格式的弹幕文件链接,并下载保存至本地;接着读取该文件提取其中的有效字段完成进一步的数据挖掘任务。 ```python import xml.etree.ElementTree as ET from datetime import datetime async def download_danmaku(video_bvid, output_file='danmakus.xml'): vid = bvid_video.Video(bvid=video_bvid) danmu_url = await vid.get_dm_xml() async with aiohttp.ClientSession() as session: resp = await session.get(danmu_url[0]) content = await resp.text() with open(output_file, 'w', encoding='utf8') as f: f.write(content) # 解析XML格式的弹幕文档 def parse_danmaku(file_path): tree = ET.parse(file_path) root = tree.getroot() items = [] for item in root.findall('d'): text = item.text.strip() timestamp_str = float(item.attrib['p'].split(',')[0]) # 提取消息显示的时间轴位置 formatted_time = str(datetime.fromtimestamp(timestamp_str)) items.append({ "content": text, "time": formatted_time }) return items ``` 上述函数实现了从远程服务器拉取特定编号影片关联的所有即时聊天消息并将其转换成易于理解的形式存储下来供后续分析使用[^2]。 #### 清洗与统计分析 对于收集来的原始弹幕资料而言,在正式投入应用之前往往还需要经历一系列预处理环节,比如去除无关字符、过滤敏感词汇等。之后再基于清理后的高质量语料开展诸如词频计算之类的量化研究活动。 ```python import jieba.analyse import matplotlib.pyplot as plt from wordcloud import WordCloud from collections import Counter # 对中文字符串做分词处理 def tokenize(texts_list): words = [] for line in texts_list: seg_result = list(jieba.cut(line)) filtered_words = filter(lambda w: len(w)>1 and not w.isdigit(), seg_result) # 过滤掉单个字母/数字 words.extend(filtered_words) return words # 绘制词云图像 def plot_word_cloud(word_freq_dist): wc = WordCloud(font_path='/path/to/simhei.ttf', background_color="white").generate_from_frequencies(dict(word_freq_dist.most_common())) plt.imshow(wc, interpolation='bilinear') plt.axis("off") plt.show() if __name__ == '__main__': bv_num = input("请输入要查询的BV号:") basic_data = fetch_basic_info(bv_num) print(f'视频名称:{basic_data["标题"]}\n发布日期:{datetime.utcfromtimestamp(int(basic_data["发布时间"]))}') asyncio.run(download_danmaku(bv_num)) parsed_comments = parse_danmaku('./danmakus.xml') all_texts = ''.join([item['content'] for item in parsed_comments]) tokens = tokenize(all_texts.split()) freq_distribution = Counter(tokens) top_keywords = dict(freq_distribution.most_common(50)) # 输出最常见的前五十个关键字及其出现次数 plot_word_cloud(top_keywords) ``` 这段脚本综合运用多种技术手段完成了对所关注对象全面而深入的理解——不仅限于表面层次的信息检索,更涉及到深层次的内容解读和模式识别层面的工作[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值