python之寻找第n个默尼森数

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/weixin_41980474/article/details/79974929

1.贴题

题目来自MOOC
《用Python玩转数据》(南京大学)
第二周编程作业


寻找第n个默尼森数。
代码格式如下:
def prime(num):

def monisen(no):
… …
return xxx

print(monisen(int(input()))) #此处不需要自己输入,只要写这样一条语句即可,主要完成monisen()函数(4分)
经典程序设计问题:找第n个默尼森数。P是素数且M也是素数,并且满足等式M=2**P-1,则称M为默尼森数。例如,P=5,M=2**P-1=31,5和31都是素数,因此31是默尼森数。
输入格式:按提示用input()函数输入
输出格式:int类型
输入样例:4
输出样例:127

时间限制:500ms内存限制:32000kb


2.说明

题目还给出了格式,降低了难度。主要思路是通过定义两个函数,其中第一个函数用来判断是不是素数,第二个函数用来判断是不是默尼森数并控制输出第几个默尼森数。

首先是判断是不是素数的函数,这个函数也是初学者必然要进行练手的。思路为从2开始(因为判断能不能被1整除没有意义)到它本身减一,是否没有数可以被整除,如果没有的话就是素数,否则不是。而通过数学知识可以知道上界可以降低到它本身的平方根,因为如果一个数如果可以分解为两个数的因子,那么它的因子的小的那一个一定会小于或等于它的平方根。因为一个数的平方根可以不是整数,所以一般的做法是将平方根取整数部分然后加一作为上界。

判断是不是默尼森数在本次代码中使用了逐个加一的方式,属于笨办法。

3.参考代码

import math #要用到平方根的函数,所以要导入math库
def prime(num): #判断是否为素数的函数,返回真或假代表是素数或不是素数
    flag = True #首先预置flag为真
    for i in range(2,int(math.sqrt(num))+1): #从2到平方根取整加一的循环
        if num%i == 0: #判断是否整除
            flag = False #如果整除则将flag改为假
            return flag #返回flag为假,结束函数
    return flag #如果找不到整除的数,则范围flag为真,结束函数


def monisen(no): #判断是不是默尼森数并控制输出第几个默尼森数
    p = 5 #p从5开始,因为判断素数的函数采用了平方根取整加一的上界,不可以对4及以下的数进行判断,否则会报错
    if no == 1: #手动分支第一个和第二个默尼森数
        return 3
    elif no == 2:
        return 7
    else:
        while no>2:  #经过手动验证p=2,m=3;p=3,m=7是第一和第二个默尼森数,因此循环次数要减少两次
            if prime(p): #判断p是否为素数
                m = 2 ** p -1 #根据公式计算m
                if prime(m): #判断m是否为素数
                    no -= 1 #如果m为素数,则说明找到一个默尼森数,no减一
            p += 1 #p加一准备进入下一个循环
        return  m #返回第no个默尼森数

print(monisen(int(input()))) #执行函数

4.后记

写完代码和说明后又去网上查了人家写的代码,大概看了看思路都是大同小异,有的大神采用缓存保存素数来着,过程太复杂了等以后再研究。

学到了一个导入时间库看程序运行时间的,码!

import time
#中间是我的源代码,与上面的参考代码相同
import math
def prime(num):
    flag = True
    for i in range(2,int(math.sqrt(num))+1):
        if num%i == 0:
            flag = False
            return flag
    return flag


def monisen(no):
    p = 5
    if no == 1:
        return 3
    elif no == 2:
        return 7
    else:
        while no>2: 
            if prime(p):
                m = 2 ** p -1
                if prime(m):
                    no -= 1
            p += 1
        return  m
#函数定义结束

start = time.clock()
print(monisen(int(input()))) 
end = time.clock()
print("time: %f s" % (end - start))

当输入为8时,输出结果为

2147483647
time: 0.005812 s

5.疑问

在判断是否是默尼森数是,判断完p后判断下一个p时,采用了加一的方法,不知道是否有相关的数学证明可以减少判断次数,即增加步长。

阅读更多

扫码向博主提问

risuinazoo

专注于把简单问题吃透!
  • 擅长领域:
  • python基础
去开通我的Chat快问
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页