决策树的ID3算法上机实现

本文介绍了ID3算法的基本原理,包括信息熵、条件熵和信息增益的概念,详细阐述了ID3算法的实现过程。通过实例分析展示了如何利用ID3算法构建决策树,同时讨论了算法的优缺点,如对噪声数据敏感、运算效率低等问题。最后,给出了一个简单的决策树构建代码示例。
摘要由CSDN通过智能技术生成

决策树的ID3算法

模式识别课程第二组课题是熟悉和掌握决策树的分类原理、实质和过程,掌握决策树典型算法(ID3、C4.5、CART)的核心思想和实现过程。

我的主要任务是对决策树的ID3算法的部分进行PPT制作以及算法讲解,主要介绍ID3算法的简介,算法原理,案例分析。

    1. ID3算法的简介

ID3算法核心是信息熵”,在创建决策树的过程中依次查询样本集合中的每个属性选取出具有最大信息增益值的属性将该属性作为测试属性与划分标准通过该标准将原始数据集合划分成多个更纯的子集并在每个子集中重复这个过程直到分支子集中的所有样本无法继续分割即样例属性属于同一类别此时一棵决策树便创建完成

    1. ID3算法的原理

1信息熵

信息熵又叫香农熵,是1948年美国数学家香农把热力学的熵引入到信息论。信息熵代表的是属性类别的不纯性度量,熵值越高属性的纯度越低。

信息熵的定义式如下

决策树算法中log使用以2为低,对于随机变量X,以一定的概率p(xi)取值为xi,当计算随机变量X的自发信息量时,由于不知道X的具体取值,要考虑到所有X取到每一个xi的情况,而对于每一个xi的自信息量是可以计算的。

2条件熵

条件熵描述在随机变量X的值已知的前提下,随机变量Y的不确定程度,表示为H(Y|X)。若H(Y|X=x)表示变量Y在变量X取特定值x条件下的熵,那么H(Y|X)就是X在取所有的x后取平均的结果。即:

条件熵可以描述在某个随机变量确定的情况下,另一个随机变量的不确定程度。

3信息增益

信息增益:通过信息熵相减求得,它反映了该属性特征在总体数据集中的重要程度,用Gain(Y,X) 表示。指在随机变量X确定条件下,随机变量Y的熵值较没有任何条件确定时减少了多少。计算公式如下:

ID3算法是一个从模糊到清晰,不确定程度越来越小的过程。在决策树构造中呢,最重要的步骤就是决策树节点属性的选择,在决策树的结点划分之前,先计算每一个属性所带来的信息增益,选择最大信息增益的属性来划分,因为信息增益越大,区分样本的能力就越强,越具有代表性,这就是ID3算法的核心。

1.3   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李逍遥敲代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值