leetCode 53.最大子数和 图解 + 贪心算法/动态规划+优化

59 篇文章 0 订阅
10 篇文章 0 订阅

53. 最大子数组和 - 力扣(LeetCode)


给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组 是数组中的一个连续部分。


示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

>>思路和分析 

一、贪心解法 贪心贪在哪里(=@__@=)?

我们看示例1,若-2 和 1在一起累加,计算起点一定从1开始,因为负数只会拉低总和,这就是贪心贪的地方!

  • 局部最优:当前 “连续和” 为负数的时候立刻放弃,从下一个元素重新计算 “连续和”,因为负数加上下一个元素 “连续和” 只会越来越小。
  • 全局最优:选取最大“连续和”

局部最优的情况下,并记录最大的 “连续和” ,可以推出全局最优

不断调整最大子序和区间的起始位置,区间终止位置是不用调整的,因为区间的终止位置,在count取得最大值了,及时记录下来了。这相当于是用result记录最大子序和区间和(变相的算是调整了终止位置) 

if (count > result) result = count;

C++代码:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int result = INT32_MIN;
        int count = 0;
        for (int i = 0; i < nums.size(); i++) {
            count += nums[i];
            if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置)
                result = count;
            }
            if (count <= 0) count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
        }
        return result;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

 二、动态规划 

dp[i] : 表示包括 i 之前的最大连续子序列和

i = 0,dp[0] = -2

i = 1,count = (-2) + 1 = -1,在count 和 nums[1] = 1中选取最大值,即 dp[1] = max(dp[0] + nums[1],nums[1]); 所以dp[1] = 1

i = 2,由于前面已经计算过包括i = 1之前的最大连续子序列和,并且将值保存在 dp[1] 里,所以count = dp[1] + (-3) = 1 + (-3) = -2,接着在count 和 nums[2] = -3中选取最大值,即 dp[2] = max(dp[1] + nums[2],nums[2]);所以dp[2] = -2表示包括i = 2之前的最大连续子序列和。同理,如下推导

i = 3,count = dp[2] + 4 = 2,dp[3] = max(2,4);所以dp[3] = 4。发现 count < nums[3],这时候取最大值就可以让dp[3] = nums[3],表示接下来,可以调整起点,让 i = 3 为起点

i = 4,count = dp[3] + (-1) = 3,dp[4] = max(3,-1);所以dp[4] = 3.发现count > nums[4]的,表示可以保持让 i = 3为起点

i = 5,count = dp[4] + 2 = 5,dp[5] = max(5,2);所以dp[5] = 5.发现count > nums[5]的,表示可以保持让 i = 3为起点

i = 6,count = dp[5] + 1 = 6,dp[6] = max(6,1);所以dp[6] = 6.发现count > nums[6]的,表示可以保持让 i = 3为起点

i = 7,count = dp[6] + (-5) = 1,dp[7] = max(1,-5);所以dp[7]=1.发现count > nums[7]的,表示可以保持让 i = 3为起点

i = 8,count = dp[7] + 4 = 5,dp[8] = max(5,4);所以dp[8] = 5.发现count > nums[8]的,表示可以保持让 i = 3为起点 

① count = dp[i-1] + nums[i];

② dp[i] = max(count,nums[i]);
        ↓
        ↓
        ↓
        ↓
③ dp[i] = max(dp[i-1] + nums[i],dp[i]);

>>动规五部曲

 1.确定dp数组(dp table)以及下标的含义

  • dp[i]:包括下标 i (以nums[i]为结尾)的最大连续子序列和为dp[i]

2.确定递推公式

  • 第一种情况,在遍历nums[i]时,延续着前面连续子序列的和(dp[i-1]),
    • 即:dp[i-1] + nums[i];
  • 第二种情况,在遍历nums[i]时,不延续前面连续子序列的和(dp[i-1]),从头开始计算,
    • 即:nums[i];

最后,我们取这两种情况的最大值dp[i] = max(dp[i-1]+nums[i],nums[i]);

3.数组初始化

  • 从递推公式可看出dp[i]依赖于dp[i-1]的状态,dp[0]就是递推公式的基础
  • dp[0] = nums[0]

4.确定遍历顺序

  • 从递推公式可看出dp[i]依赖于dp[i-1]的状态,故需从前往后遍历

5.举例推导dp数组

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        vector<int> dp(nums.size(), 0); // dp[i]表示包括i之前的最大连续子序列和
        dp[0] = nums[0];
        int result = dp[0];
        for (int i = 1; i < nums.size(); i++) {
            dp[i] = max(dp[i - 1] + nums[i], nums[i]); // 状态转移公式
            if (dp[i] > result) result = dp[i]; // result 保存dp[i]的最大值
        }
        return result;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

>>优化空间复杂度

class Solution {
public:
    // 动态规划 + 优化空间复杂度
    int maxSubArray(vector<int>& nums) {
        if(nums.size() == 0) return 0;
        int pre = nums[0];
        int result = nums[0];
        for(int i=1; i<nums.size(); i++) {
            pre = max(pre + nums[i],nums[i]); 
            if(pre > result) result = pre;
        }
        return result;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

参考和推荐文章、视频

代码随想录 (programmercarl.com)icon-default.png?t=N7T8https://programmercarl.com/0053.%E6%9C%80%E5%A4%A7%E5%AD%90%E5%BA%8F%E5%92%8C.html#%E6%80%9D%E8%B7%AF

代码随想录 (programmercarl.com)icon-default.png?t=N7T8https://www.programmercarl.com/0053.%E6%9C%80%E5%A4%A7%E5%AD%90%E5%BA%8F%E5%92%8C%EF%BC%88%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%EF%BC%89.html#%E6%80%9D%E8%B7%AF

贪心算法的巧妙需要慢慢体会!LeetCode:53. 最大子序和_哔哩哔哩_bilibiliicon-default.png?t=N7T8https://www.bilibili.com/video/BV1aY4y1Z7ya/?spm_id_from=333.788&vd_source=a934d7fc6f47698a29dac90a922ba5a3

看起来复杂,其实是简单动态规划 | LeetCode:53.最大子序和_哔哩哔哩_bilibiliicon-default.png?t=N7T8https://www.bilibili.com/video/BV19V4y1F7b5/?spm_id_from=333.788&vd_source=a934d7fc6f47698a29dac90a922ba5a3

来自代码随想录的课堂截图:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

呵呵哒( ̄▽ ̄)"

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值