leetCode 131.分割回文串 + 回溯算法 + 图解 + 笔记

131. 分割回文串 - 力扣(LeetCode)

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是 回文串 。返回 s 所有可能的分割方案。回文串 是正着读和反着读都一样的字符串

示例 1:

输入:s = "aab"
输出:[["a","a","b"],["aa","b"]]

示例 2:

输入:s = "a"
输出:[["a"]]

>>思路和分析:

  1. 切割问题,有不同的切割方式
  2. 判断回文

代码随想录的Carl老师说:“切割问题类似组合问题”!(这段文字来自代码随想录--分割回文串

对于字符串abcdef

  • 组合问题选取一个a之后,在bcdef中再去选取第二个,选取b之后在cdef中再选取第三个.....
  • 切割问题切割一个a之后,在bcdef中再去切割第二段,切割b之后在cdef中再切割第三段.....

>>回溯三部曲:

1).确定回溯函数参数

  • path 存放切割后回文的子串
  • result 保存 path,作为结果集
  • startIndex 来控制for循环的起始位置(表示下一轮递归遍历的起始位置),还用来表示这条切割线.(切割过的地方,不能重复切割,和组合问题也是保持一致的【这句话来自代码随想录】)
vector<vector<string>> result;
vector<string> path; // 放已经回文的子串
void backtracking (const string& s, int startIndex) // startIndex 就用来表示这条切割线

2).递归的终止条件

如果切割线切到了字符串最后面,表示找了一种切割方法,此时终止本层递归!也就是出现这种情况: startIndex >= s.size(),收集结果后直接return;

void backtracking (const string& s, int startIndex) {
    // 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了
    if (startIndex >= s.size()) {
        result.push_back(path);
        return;
    }
}

3).单层搜索的逻辑

>>问题(O_O)?思考:在递归循环中如何截取子串呢?

  • [startIndex,i]:左闭右闭,表示子串的起始位置和终止位置,有截取区间就可以截取子串。substr(startIndex, i - startIndex + 1);

>>问题(O_O)?思考:如何判断所截取子串是否为回文子串呢?

  1. 判断是否为回文子串:isPalindrome(s, startIndex, i),用双指针法
  2. 如果是回文,就加入在vector<string> path中,path 用来记录切割过的回文子串
for (int i = startIndex; i < s.size(); i++) {
    if (isPalindrome(s, startIndex, i)) { // 是回文子串
        // 获取[startIndex,i]在s中的子串
        string str = s.substr(startIndex, i - startIndex + 1);
        path.push_back(str);
    } else {                // 如果不是则直接跳过
        continue;
    }
    backtracking(s, i + 1); // 寻找i+1为起始位置的子串
    path.pop_back();        // 回溯过程,弹出本次已经添加的子串
}

注意:切割过的位置,不能重复切割,应传入下一层的起始位置为 i + 1,即

  • backtracking(s, i + 1);

 (1)判断是否为回文子串

bool isPalindrome(const string& s, int start, int end) {
     for (int i = start, j = end; i < j; i++, j--) {
         if (s[i] != s[j]) {
             return false;
         }
     }
     return true;
 }
bool isPalindrome(string s) {
    int left = 0,right = s.size()-1;
    while(left<=right) {
        if (s[left] != s[right]) return false;
        left++;
        right--;
    }
    return true;
}

 (2)C++代码

class Solution {
private:
    vector<vector<string>> result;
    vector<string> path; // 放已经回文的子串
    void backtracking (const string& s, int startIndex) {
        // 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了
        if (startIndex >= s.size()) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i < s.size(); i++) {
            if (isPalindrome(s, startIndex, i)) {   // 是回文子串
                // 获取[startIndex,i]在s中的子串
                string str = s.substr(startIndex, i - startIndex + 1);
                path.push_back(str);
            } else {                                // 不是回文,跳过
                continue;
            }
            backtracking(s, i + 1); // 寻找i+1为起始位置的子串
            path.pop_back(); // 回溯过程,弹出本次已经添加的子串
        }
    }
    bool isPalindrome(const string& s, int start, int end) {
        for (int i = start, j = end; i < j; i++, j--) {
            if (s[i] != s[j]) {
                return false;
            }
        }
        return true;
    }
public:
    vector<vector<string>> partition(string s) {
        backtracking(s, 0);
        return result;
    }
};
  • 时间复杂度: O(n * 2^n)
  • 空间复杂度: O(n^2)
class Solution {
public:
    vector<vector<string>> result;
    vector<string> path; // 放已经回文的子串
    bool isPalindrome(string s) {
        int left = 0,right = s.size()-1;
        while(left<=right) {
            if (s[left] != s[right]) return false;
            left++;
            right--;
        }
        return true;
    }
    void backtracking(string s,int startIndex) {
        // 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了
        if(startIndex >= s.size()) {
            result.push_back(path);
            return;
        }
        for(int i=startIndex;i<s.size();i++) {
            // 获取[startIndex,i]在s中的子串
            string subStr = s.substr(startIndex,i-startIndex+1);
            if(isPalindrome(subStr)) path.push_back(subStr);// 是回文子串
            else continue;// 不是回文,跳过
            backtracking(s, i + 1); // 寻找i+1为起始位置的子串
            path.pop_back(); // 回溯过程,弹出本次已经添加的子串
        }
    }
    vector<vector<string>> partition(string s) {
        backtracking(s, 0);
        return result;
    }
};

 参考和推荐文章、视频:
带你学透回溯算法-分割回文串(对应力扣题目:131.分割回文串)| 回溯法精讲!_哔哩哔哩_bilibiliicon-default.png?t=N7T8https://www.bilibili.com/video/BV1c54y1e7k6/?p=67&spm_id_from=pageDriver代码随想录 (programmercarl.com)icon-default.png?t=N7T8https://www.programmercarl.com/0131.%E5%88%86%E5%89%B2%E5%9B%9E%E6%96%87%E4%B8%B2.html#%E4%BC%98%E5%8C%96

题目描述: 给定一个只包含正整数的非空数组,是否可以将这个数组分成两个子集,使得两个子集的元素和相等。 示例: 输入:[1, 5, 11, 5] 输出:true 解释:数组可以分割成 [1, 5, 5] 和 [11]。 解题思路: 这是一道经典的 0-1 背包问题,可以使用动态规划或者回溯算法解决。 使用回溯算法,需要定义一个 backtrack 函数,该函数有三个参数: - 数组 nums; - 当前处理到的数组下标 index; - 当前已经选择的元素和 leftSum。 回溯过程中,如果 leftSum 等于数组元素和的一半,那么就可以直接返回 true。如果 leftSum 大于数组元素和的一半,那么就可以直接返回 false。如果 index 到达数组末尾,那么就可以直接返回 false。 否则,就对于当前元素,有选择和不选择两种情况。如果选择当前元素,那么 leftSum 就加上当前元素的值,index 就加 1。如果不选择当前元素,那么 leftSum 不变,index 也加 1。最终返回所有可能性的结果中是否有 true。 Java 代码实现: class Solution { public boolean canPartition(int[] nums) { int sum = 0; for (int num : nums) { sum += num; } if (sum % 2 != 0) { return false; } Arrays.sort(nums); return backtrack(nums, nums.length - 1, sum / 2); } private boolean backtrack(int[] nums, int index, int leftSum) { if (leftSum == 0) { return true; } if (leftSum < 0 || index < 0 || leftSum < nums[index]) { return false; } return backtrack(nums, index - 1, leftSum - nums[index]) || backtrack(nums, index - 1, leftSum); } }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

呵呵哒( ̄▽ ̄)"

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值