Adversarial Multimodal Representation Learning for Click-Through Rate Prediction(阿里点击率预测)(MARN)

该博客探讨了如何在多模态数据中区分共同特征和模态独有的特征。通过使用双鉴别器,第一个鉴别器专注于识别共同特征并评估其属于特定模态的概率。权重w被定义为这个概率的倒数,用于指导第二个鉴别器的训练,该鉴别器采用极大极小损失函数。这种方法旨在减小共同特征的差距,将它们映射到一个共同的子空间,从而提高多模态特征的融合效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

将多模态间的特征分为共同特征和模态独有特征,缩小共同特征差距使之映射到共同子空间

利用双鉴别器

第一个鉴别器用来识别多个模态的共同特征,并说明特征属于模态m的可能性p

定义权重w = 1-p来将这个权重结合多模态给第二个鉴别器鉴别

第二个鉴别器利用极大极小损失函数进行训练

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值