布置宴席最微妙的事情,就是给前来参宴的各位宾客安排座位。无论如何,总不能把两个死对头排到同一张宴会桌旁!这个艰巨任务现在就交给你,对任何一对客人,请编写程序告诉主人他们是否能被安排同席。
输入格式:
输入第一行给出3个正整数:N
(≤100),即前来参宴的宾客总人数,则这些人从1到N
编号;M
为已知两两宾客之间的关系数;K
为查询的条数。随后M
行,每行给出一对宾客之间的关系,格式为:宾客1 宾客2 关系
,其中关系
为1表示是朋友,-1表示是死对头。注意两个人不可能既是朋友又是敌人。最后K
行,每行给出一对需要查询的宾客编号。
这里假设朋友的朋友也是朋友。但敌人的敌人并不一定就是朋友,朋友的敌人也不一定是敌人。只有单纯直接的敌对关系才是绝对不能同席的。
输出格式:
对每个查询输出一行结果:如果两位宾客之间是朋友,且没有敌对关系,则输出No problem
;如果他们之间并不是朋友,但也不敌对,则输出OK
;如果他们之间有敌对,然而也有共同的朋友,则输出OK but...
;如果他们之间只有敌对关系,则输出No way
。
输入样例:
7 8 4
5 6 1
2 7 -1
1 3 1
3 4 1
6 7 -1
1 2 1
1 4 1
2 3 -1
3 4
5 7
2 3
7 2
输出样例:
No problem
OK
OK but...
No way
注意:同个集合里的f[i]可能不同,要通过 find(i)来找到共同祖先!!
#include<iostream>
using namespace std;
int enemy[105][105];
int f[105];
int find(int a){
return f[a] == a ? a : f[a] = find(f[a]);
}
void _union(int a,int b){
int pa = find(a);
int pb = find(b);
if(pa != pb){
f[pa] = pb;
}
}
int main()
{
int n,m,k;
int a,b,c;
cin>>n>>m>>k;
for(int i = 1;i <= n;i ++) f[i] = i;
for(int i = 0;i < m;i ++){
cin>>a>>b>>c;
if(c == 1){
_union(a,b);
}
else if(c == -1){
enemy[a][b] = 1;
enemy[b][a] = 1;
}
}
while(k --){
cin>>a>>b;
if(find(a) == find(b) && enemy[a][b] == 0){
cout<<"No problem"<<endl;
}
else if(find(a) != find(b) && enemy[a][b] == 0){
cout<<"OK"<<endl;
}
else if(find(a) == find(b) && enemy[a][b] == 1){
cout<<"OK but..."<<endl;
}
else if(enemy[a][b] == 1){
cout<<"No way"<<endl;
}
}
return 0;
}