在训练Pytorch的时候,我们会使用
model.zero_grad()
optimizer.zero_grad()
首先,这两种方式都是把模型中参数的梯度设为0
当optimizer = optim.Optimizer(net.parameters())
时,二者等效,其中Optimizer
可以是Adam、SGD
等优化器
def zero_grad(self):
"""Sets gradients of all model parameters to zero."""
for p in self.parameters():
if p.grad is not None:
p.grad.data.zero_()
说明
在pytorch中做随机梯度下降时往往会用到zero_grad()函数,相关代码如下。
optimizer.zero_grad() # 将模型的参数梯度初始化为0
outputs=model(inputs) # 前向传播计算预测值
loss = cost(outputs, y_train) # 计算当前损失
loss.backward() # 反向传播计算梯度
optimizer.step() # 更新所有参数
作用
根据pytorch中backward()
函数的计算,当网络参量进行反馈时,梯度是累积计算而不是被替换,但在处理每一个batch时并不需要与其他batch的梯度混合起来累积计算,因此需要对每个batch调用一遍zero_grad()
将参数梯度置0.
另外,如果不是处理每个batch清除一次梯度,而是两次或多次再清除一次,相当于提高了batch_size,对硬件要求更高,更适用于需要更高batch_size的情况。