【PyTorch】PyTorch中的model.zero_grad()和optimizer.zero_grad()使用

在训练Pytorch的时候,我们会使用

model.zero_grad()
optimizer.zero_grad()

首先,这两种方式都是把模型中参数的梯度设为0

optimizer = optim.Optimizer(net.parameters())时,二者等效,其中Optimizer可以是Adam、SGD等优化器

def zero_grad(self):
        """Sets gradients of all model parameters to zero."""
        for p in self.parameters():
            if p.grad is not None:
                p.grad.data.zero_()
说明

在pytorch中做随机梯度下降时往往会用到zero_grad()函数,相关代码如下。

optimizer.zero_grad()                       # 将模型的参数梯度初始化为0
outputs=model(inputs)              # 前向传播计算预测值
loss = cost(outputs, y_train)           # 计算当前损失
loss.backward()                               # 反向传播计算梯度
optimizer.step()                               # 更新所有参数
作用

根据pytorch中backward()函数的计算,当网络参量进行反馈时,梯度是累积计算而不是被替换,但在处理每一个batch时并不需要与其他batch的梯度混合起来累积计算,因此需要对每个batch调用一遍zero_grad()将参数梯度置0.

另外,如果不是处理每个batch清除一次梯度,而是两次或多次再清除一次,相当于提高了batch_size,对硬件要求更高,更适用于需要更高batch_size的情况。

参考
model.zero_grad()和optimizer.zero_grad()是深度学习常用的两种清空梯度的方法。在训练神经网络的过程,我们需要计算梯度并更新参数,而这些计算出来的梯度是会累加的,所以在每次更新之前需要将梯度清空,否则会导致梯度爆炸或梯度消失的问题。因此,清空梯度的操作是非常重要的,同时这也是深度学习最基础的操作之一。 model.zero_grad()是清空模型所有参数的梯度,是对模型进行操作的函数。当我们使用PyTorch训练模型时,通常在每个batch的训练结束后会调用此函数来清空梯度。这样做的目的是为了防止每个batch的梯度对后面的batch产生影响,保证每个batch的梯度计算都是独立的,从而保证模型的收敛性。 而optimizer.zero_grad()则是清空优化器所有参数的梯度。在PyTorch使用优化器来更新模型的参数。每次更新时,我们需要将参数的梯度清零,这样优化器才能使用新的梯度来更新参数。因此,在每轮训练的开始时,一般会调用optimizer.zero_grad()来清空优化器所有参数的梯度。这样做的另一个好处是,防止前面的梯度影响后面的梯度,从而保证优化器的更新效果。 总之,对于模型的训练来说,清空参数梯度是一个非常重要的操作。深度学习模型有大量的权重需要训练,如果不清空梯度,那么前面计算的梯度就会对后面的梯度产生影响,影响模型的学习效果。因此,在每次梯度更新之前,一定要注意清空梯度。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xhfei1224

你的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值