617. 合并二叉树
题目描述:
给你两棵二叉树: root1 和 root2 。
想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新二叉树。合并的规则是:如果两个节点重叠,那么将这两个节点的值相加作为合并后节点的新值;否则,不为 null 的节点将直接作为新二叉树的节点。
返回合并后的二叉树。
注意: 合并过程必须从两个树的根节点开始
解答:
首先来一个比较直白的思路,遍历两棵树,对比节点,创建一棵新树。
至于遍历方法,前中后三种遍历均可。此处采用先序遍历。
分两种情况:
(1)节点重叠:二者之和,再递归访问左右子树。
(2)节点不重叠:直接将非空部分放到新树中即可。
代码实现:
class Solution {
public:
TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {
if (root1 == NULL && root2 == NULL)
return NULL;
TreeNode* root = new TreeNode();
if (root1 == NULL && root2 != NULL)
root = root2;
else if (root1 != NULL && root2 == NULL)
root = root1;
else{
root->val = root1->val + root2->val;
root->left = mergeTrees(root1->left, root2->left);
root->right = mergeTrees(root1->right, root2->right);
}
return root;
}
};
精简后:
不使用额外的树空间,直接合并到树1中。
class Solution {
public:
TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
// 修改了t1的数值和结构
t1->val += t2->val; // 中
t1->left = mergeTrees(t1->left, t2->left); // 左
t1->right = mergeTrees(t1->right, t2->right); // 右
return t1;
}
};
700.二叉搜索树中的搜索
题目描述:
给定二叉搜索树(BST)的根节点 root 和一个整数值 val。
你需要在 BST 中找到节点值等于 val 的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 null 。
解答:
二叉搜索树是一个有序树:其根节点左子树中的节点一定小于根,右子树中的节点一定大于根。
法一:递归法
采用递归法进行实现,考虑递归三要素。
(1)参数和返回值:参数有根节点root、要找的数val;返回值为寻址的结果。
此处再次回顾一下,递归是否需要返回值。(递归是否需要返回值)112.路径总和、113. 路径总和 II_清榎的博客-CSDN博客
本题只要找到一个节点满足条件便结束,和上文中找一条路径类似,故需要返回值。
(2)终止条件:root为空则返回NULL
(3)处理逻辑:如果根节点的值等于val则直接返回根节点,如果不等于根据根节点和val之间的大小关系进行递归访问。
代码实现:
class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
if(root == NULL)
return NULL;
if (root->val == val)
return root;
return root->val >val? searchBST(root->left, val):searchBST(root->right, val);
}
};
法二:迭代法
深度优先遍历可以拿栈模拟,广度优先遍历可以使用队列,但是此处由于二叉搜索树节点的有序性,可以不使用辅助栈或者队列就可以写出迭代法。
对于一般二叉树,递归过程中还有回溯的过程,例如走一个左方向的分支走到头了,那么要调头,在走右分支。
对于二叉搜索树,不需要回溯的过程,因为节点的有序性就帮我们确定了搜索的方向。
代码实现:
class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
if(root == NULL)
return NULL;
while (root){
if (root->val == val)
return root;
if (root->val > val)
root = root->left;
else
root = root->right;
}
return root;
}
};
98. 验证二叉搜索树
题目描述:
给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。
有效 二叉搜索树定义如下:
节点的左子树只包含 小于 当前节点的数。
节点的右子树只包含 大于 当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。
解答:
法一:
考虑到二叉搜索树是一个有序序列,可以先进行中序遍历,检查遍历后的结果集是否有序即可。
class Solution {
public:
void inOrder(TreeNode* root, vector<int> &result){
if (root == NULL)
return ;
inOrder(root->left, result);
result.push_back(root->val);
inOrder(root->right, result);
}
bool isValidBST(TreeNode* root) {
vector<int>result;
inOrder(root, result);
for(int i = 0; i<result.size()-1; i++){
if (result[i] >= result[i+1])
return false;
}
return true;
}
};
法二:递归法
这道题使用递归法需要注意的第一个地方是:并不是左孩子小于根节点、右孩子大于根就一定满足二叉搜索树(左孩子的右孩子大于根情况无法识别)。
所以我采用的办法是,创建一个全局变量,用来比较遍历的节点是否有序。
考虑递归三要素:
(1)参数和返回值:参数为根节点;返回值为bool类型,与之前找路径类似,此处只要发现不满足二叉搜索树就要直接返回。
(2)终止条件:节点为空,返回true
(3)内部处理逻辑:按照中序遍历(左中右)进行处理。遇到maxVal大于根节点值时直接返回false。
代码实现:
class Solution {
public:
long long maxVal = LONG_MIN; // 因为后台测试数据中有int最小值
bool isValidBST(TreeNode* root) {
if (root == NULL) return true;
bool left = isValidBST(root->left);
// 中序遍历,验证遍历的元素是不是从小到大
if (maxVal < root->val) maxVal = root->val;
else return false;
bool right = isValidBST(root->right);
return left && right;
}
};