参考1:https://github.com/PlexPt/chatgpt-java
参考2:https://www.51cto.com/article/747923.html
配置
- FastJson2JsonRedisSerializer
import java.nio.charset.Charset;
import org.springframework.data.redis.serializer.RedisSerializer;
import org.springframework.data.redis.serializer.SerializationException;
import com.alibaba.fastjson2.JSON;
import com.alibaba.fastjson2.JSONReader;
import com.alibaba.fastjson2.JSONWriter;
/**
* Redis使用FastJson序列化
*
* @author gxsldl
*/
public class FastJson2JsonRedisSerializer<T> implements RedisSerializer<T> {
public static final Charset DEFAULT_CHARSET = Charset.forName("UTF-8");
private Class<T> clazz;
public FastJson2JsonRedisSerializer(Class<T> clazz) {
super();
this.clazz = clazz;
}
@Override
public byte[] serialize(T t) throws SerializationException {
if (t == null) {
return new byte[0];
}
return JSON.toJSONString(t, JSONWriter.Feature.WriteClassName).getBytes(DEFAULT_CHARSET);
}
@Override
public T deserialize(byte[] bytes) throws SerializationException {
if (bytes == null || bytes.length <= 0) {
return null;
}
String str = new String(bytes, DEFAULT_CHARSET);
return JSON.parseObject(str, clazz, JSONReader.Feature.SupportAutoType);
}
}
- RedisConfig
import org.springframework.cache.annotation.CachingConfigurerSupport;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.script.DefaultRedisScript;
import org.springframework.data.redis.serializer.StringRedisSerializer;
/**
* redis配置
*
* @author gxsldl
*/
@Configuration
@EnableCaching
public class RedisConfig extends CachingConfigurerSupport {
@Bean
@SuppressWarnings(value = {"unchecked", "rawtypes"})
public RedisTemplate<Object, Object> redisTemplate(RedisConnectionFactory connectionFactory) {
RedisTemplate<Object, Object> template = new RedisTemplate<>();
template.setConnectionFactory(connectionFactory);
FastJson2JsonRedisSerializer serializer = new FastJson2JsonRedisSerializer(Object.class);
// 使用StringRedisSerializer来序列化和反序列化redis的key值
template.setKeySerializer(new StringRedisSerializer());
template.setValueSerializer(serializer);
// Hash的key也采用StringRedisSerializer的序列化方式
template.setHashKeySerializer(new StringRedisSerializer());
template.setHashValueSerializer(serializer);
template.afterPropertiesSet();
return template;
}
@Bean
public DefaultRedisScript<Long> limitScript() {
DefaultRedisScript<Long> redisScript = new DefaultRedisScript<>();
redisScript.setScriptText(limitScriptText());
redisScript.setResultType(Long.class);
return redisScript;
}
/**
* 限流脚本
*/
private String limitScriptText() {
return "local key = KEYS[1]\n" +
"local count = tonumber(ARGV[1])\n" +
"local time = tonumber(ARGV[2])\n" +
"local current = redis.call('get', key);\n" +
"if current and tonumber(current) > count then\n" +
" return tonumber(current);\n" +
"end\n" +
"current = redis.call('incr', key)\n" +
"if tonumber(current) == 1 then\n" +
" redis.call('expire', key, time)\n" +
"end\n" +
"return tonumber(current);";
}
}
- application.yml
server:
port: 12300
servlet:
context-path: /
tomcat:
uri-encoding: UTF-8
accept-count: 1000
threads:
max: 800
min-spare: 100
feishu:
messages-reply: https://open.feishu.cn/open-apis/im/v1/messages/%s/reply
token-url: https://open.feishu.cn/open-apis/auth/v3/app_access_token/internal/
openai:
token: sk-MMiKbgBZMbGIwPkgc6*********** # 填写自己的 API Key
proxy:
port: 7890
spring:
redis:
host: localhost
port: 6379
database: 15
password:
timeout: 10s
lettuce:
pool:
min-idle: 0
max-idle: 8
max-active: 8
max-wait: -1ms
logging:
level:
root: info
- maven
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
<version>3.0.5</version>
</dependency>
<!-- fastjson2 -->
<dependency>
<groupId>com.alibaba.fastjson2</groupId>
<artifactId>fastjson2</artifactId>
<version>2.0.26</version>
</dependency>
<dependency>
<groupId>com.github.plexpt</groupId>
<artifactId>chatgpt</artifactId>
<version>4.0.5</version>
</dependency>
<!-- hutool-http -->
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-http</artifactId>
<version>5.8.18</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.26</version>
<scope>provided</scope>
</dependency>
常量类
public class RedisConstant {
public static final Integer MESSAGE_EVENT_ID_EXPIRE = 30;
}
public class SystemConstant {
public static final String TENANT_ACCESS_TOKEN = "tenant:access:token:";
}
controller 类
package com.feishu.chatgpt.controller;
import cn.hutool.core.io.IORuntimeException;
import cn.hutool.core.util.RandomUtil;
import cn.hutool.http.HttpRequest;
import cn.hutool.http.HttpResponse;
import cn.hutool.http.HttpUtil;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson2.JSONArray;
import com.alibaba.fastjson2.JSONObject;
import com.feishu.chatgpt.constant.RedisConstant;
import com.feishu.chatgpt.entity.FeishuEventDTO;
import com.feishu.chatgpt.entity.FeishuEventParams;
import com.feishu.chatgpt.entity.FeishuResponse;
import com.feishu.chatgpt.utils.FeishuUtils;
import com.feishu.chatgpt.utils.RedisCache;
import com.plexpt.chatgpt.util.Proxys;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import java.net.ConnectException;
import java.net.Proxy;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.TimeUnit;
@Slf4j
@RestController
@RequestMapping(value = "/query")
public class QueryController {
@Value("${feishu.messages-reply}")
private String messagesReply;
@Value("${openai.token}")
private String openaiToken;
@Value("${proxy.port}")
private Integer proxyPort;
@Autowired
private RedisCache redisCache;
@Autowired
private FeishuUtils feishuUtils;
@PostMapping(value = "/message")
public String message(@RequestBody String body) {
log.info("收到飞书消息:{}", body);
JSONObject jsonObject = JSONObject.parseObject(body);
JSONObject header = jsonObject.getJSONObject("header");
//请头为空,或消息已经回复过,则不再回复
if(eventCheck(header)){
return null;
}
String eventType = header.getString("event_type");
if ("im.message.receive_v1".equals(eventType)) {
JSONObject event = jsonObject.getJSONObject("event");
JSONObject message = event.getJSONObject("message");
String messageType = message.getString("message_type");
if ("text".equals(messageType)) {
String messageId = message.getString("message_id");
String content = message.getString("content");
JSONObject contentJson = JSONObject.parseObject(content);
String text = contentJson.getString("text");
FeishuResponse feishuResponse = new FeishuResponse();
feishuResponse.setMessageId(messageId);
feishuResponse.setQuery(text);
log.debug("投递用户消息,{}", JSON.toJSONString(feishuResponse));
//String query = queryCompletions(content); //text-davinci-003 模型
String query = queryChat(content); // gpt-3.5-turbo 模型
reply(feishuResponse, query);
} else {
log.debug("非文本消息");
}
}
return "success";
}
/**
* 回复飞书机器人
* @param poll
* @param rs
* @return
*/
private String reply(FeishuResponse poll, String rs) {
JSONObject params = new JSONObject();
params.put("uuid", RandomUtil.randomNumbers(10));
params.put("msg_type", "text");
JSONObject content = new JSONObject();
content.put("text", rs);
params.put("content", content.toJSONString());
String url = String.format(messagesReply, poll.getMessageId());
String tenantAccessToken = feishuUtils.getTenantAccessToken();
String body = null;
try (HttpResponse authorization = HttpUtil.createPost(url)
.header("Authorization", "Bearer " + tenantAccessToken)
.body(params.toJSONString())
.execute()) {
body = authorization.body();
}
return body;
}
/**
* v1/chat/completions 下的模型调用方法
*/
public String queryChat(String queryMsg){
Map<String,String> headers = new HashMap<String,String>();
headers.put("Content-Type","application/json");
JSONObject json = new JSONObject();
//选择模型
json.put("model","gpt-3.5-turbo");
//添加我们需要输入的内容
JSONObject msg = new JSONObject();
msg.put("role", "user");
msg.put("content", queryMsg);
JSONArray array = new JSONArray();
array.add(msg);
json.put("messages", array);
json.put("temperature",0);
json.put("max_tokens",2048);
json.put("top_p",1);
json.put("frequency_penalty",0.0);
json.put("presence_penalty",0.0);
try{
Proxy proxy = Proxys.http("127.0.0.1", proxyPort);
HttpResponse response = HttpRequest.post("https://api.openai.com/v1/chat/completions") //gpt-3.5-turbo
.headerMap(headers, false)
.bearerAuth(openaiToken)
.setProxy(proxy)
.body(String.valueOf(json))
.timeout(600000)
.execute();
String result = response.body();
log.debug("query:{},获取响应:{}", queryMsg, JSON.toJSONString(result));
JSONObject parseObject = JSONObject.parseObject(result);
JSONArray choices = parseObject.getJSONArray("choices");
JSONObject resMsg = choices.getJSONObject(0).getJSONObject("message");
return resMsg.getString("content");
} catch (IORuntimeException e){
log.error("openai 接口调用异常:{}", e.getMessage());
if(e.getMessage().contains("Connection timed out")){
return "Error: 连接超时,请检查vpn节点是否正常";
}
return "Error: 连接被拒绝,请检查vpn是否已开启";
} catch (Exception e){
e.printStackTrace();
log.error("openai 接口调用异常:{}", e.getMessage());
return "openai API 调用异常";
}
}
/**
* v1/completions 下的模型调用方法
*/
public String queryCompletions(String query){
Map<String,String> headers = new HashMap<String,String>();
headers.put("Content-Type","application/json");
JSONObject json = new JSONObject();
//选择模型
json.put("model","text-davinci-003");
//添加我们需要输入的内容
json.put("prompt", query);
json.put("temperature",0);
json.put("max_tokens",2048);
json.put("top_p",1);
json.put("frequency_penalty",0.0);
json.put("presence_penalty",0.0);
try{
Proxy proxy = Proxys.http("127.0.0.1", proxyPort); // 代码中设置代理,端口号从代理软件中获取
HttpResponse response = HttpRequest.post("https://api.openai.com/v1/completions")
.headerMap(headers, false)
.bearerAuth(openaiToken)
.setProxy(proxy)
.body(String.valueOf(json))
.timeout(600000)
.execute();
JSONObject resultJson = JSONObject.parseObject(response.body());
JSONObject message = resultJson.getJSONArray("choices").getJSONObject(0);
String content = message.getString("text");
System.err.println(message);
if(content.indexOf("\n\n") == 0){
content = content.substring(2);
}
return content;
} catch (IORuntimeException e){
log.error("openai 接口调用异常:{}", e.getMessage());
if(e.getMessage().contains("Connection timed out")){
return "Error: 连接超时,请检查vpn节点是否正常";
}
return "Error: 连接被拒绝,请检查vpn是否已开启";
} catch (Exception e){
e.printStackTrace();
log.error("openai 接口调用异常:{}", e.getMessage());
return "openai API 调用异常";
}
}
/**
* 检查请求头是否为空或消息事件是否重复
* @param header
* @return
*/
public boolean eventCheck(JSONObject header){
if (header == null){
return true;
}
String eventId = header.getString("event_id");
if(redisCache.hasKey(eventId)){
//消息事件重复
return true;
}else{
//设置30天过期,飞书机器人不定时读取到已回复过的消息,导致重复调用接口重复回复已回复过的消息
redisCache.setCacheObject(eventId, 1, RedisConstant.MESSAGE_EVENT_ID_EXPIRE, TimeUnit.DAYS);
}
return false;
}
/**
* 飞书开放平台上配置【事件订阅】时请求地址配置填写使用
* 与收消息用同一个地址,在平台上验证成功后注释掉即可
* @param body
* @return
*/
//@PostMapping(value = "/message")
public FeishuEventDTO messageFeishuCheck(@RequestBody String body) {
log.debug("收到消息:{}", body);
FeishuEventParams feishuEventParams = JSON.parseObject(body, FeishuEventParams.class);
FeishuEventDTO eventDTO = new FeishuEventDTO();
eventDTO.setChallenge(feishuEventParams.getChallenge());
return eventDTO;
}
}
- 飞书平台验证,接口需要外网能访问
entity类
import lombok.Data;
@Data
public class FeishuEventDTO {
private String challenge;
}
import lombok.Data;
@Data
public class FeishuEventParams {
private String challenge;
private String token;
private String type;
}
import lombok.Data;
@Data
public class FeishuResponse {
private String messageId;
private String query;
}
工具类
import cn.hutool.core.util.StrUtil;
import cn.hutool.http.HttpResponse;
import cn.hutool.http.HttpUtil;
import com.alibaba.fastjson2.JSON;
import com.alibaba.fastjson2.JSONObject;
import com.feishu.chatgpt.constant.SystemConstant;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;
@Slf4j
@Component
public class FeishuUtils {
@Autowired
private RedisCache redisCache;
@Value("${feishu.token-url}")
private String tokenUrl;
//这个是飞书应用的appid和key,可以在创建的飞书应用中找到
public static final String appId = "cli_a4cf4*********";
public static final String appKey = "0ib7gAmiJjs5Hnm****************";
public String getTenantAccessToken() {
String token = null;
if(redisCache.hasKey(SystemConstant.TENANT_ACCESS_TOKEN)){
token = redisCache.getCacheObject(SystemConstant.TENANT_ACCESS_TOKEN);
}else{
JSONObject params = new JSONObject();
params.put("app_id", appId);
params.put("app_secret", appKey);
String body;
HttpResponse execute = HttpUtil.createPost(tokenUrl).body(params.toJSONString()).execute();
body = execute.body();
log.debug("获取飞书token:{}", body);
if (StrUtil.isNotBlank(body)) {
String tenantAccessToken = JSON.parseObject(body).getString("tenant_access_token");
redisCache.setCacheObject("tenantAccessToken", tenantAccessToken);
return tenantAccessToken;
}
}
return token;
}
}
import java.util.Collection;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.TimeUnit;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.BoundSetOperations;
import org.springframework.data.redis.core.HashOperations;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.ValueOperations;
import org.springframework.stereotype.Component;
/**
* spring redis 工具类
*
* @author gxsldl
**/
@SuppressWarnings(value = {"unchecked", "rawtypes"})
@Component
public class RedisCache {
@Autowired
public RedisTemplate redisTemplate;
/**
* 缓存基本的对象,Integer、String、实体类等
*
* @param key 缓存的键值
* @param value 缓存的值
*/
public <T> void setCacheObject(final String key, final T value) {
redisTemplate.opsForValue().set(key, value);
}
/**
* 缓存基本的对象,Integer、String、实体类等
*
* @param key 缓存的键值
* @param value 缓存的值
* @param timeout 时间
* @param timeUnit 时间颗粒度
*/
public <T> void setCacheObject(final String key, final T value, final Integer timeout, final TimeUnit timeUnit) {
redisTemplate.opsForValue().set(key, value, timeout, timeUnit);
}
/**
* 设置有效时间
*
* @param key Redis键
* @param timeout 超时时间
* @return true=设置成功;false=设置失败
*/
public boolean expire(final String key, final long timeout) {
return expire(key, timeout, TimeUnit.SECONDS);
}
/**
* 设置有效时间
*
* @param key Redis键
* @param timeout 超时时间
* @param unit 时间单位
* @return true=设置成功;false=设置失败
*/
public boolean expire(final String key, final long timeout, final TimeUnit unit) {
return redisTemplate.expire(key, timeout, unit);
}
/**
* 获取有效时间
*
* @param key Redis键
* @return 有效时间
*/
public long getExpire(final String key) {
return redisTemplate.getExpire(key);
}
/**
* 判断 key是否存在
*
* @param key 键
* @return true 存在 false不存在
*/
public Boolean hasKey(String key) {
return redisTemplate.hasKey(key);
}
/**
* 获得缓存的基本对象。
*
* @param key 缓存键值
* @return 缓存键值对应的数据
*/
public <T> T getCacheObject(final String key) {
ValueOperations<String, T> operation = redisTemplate.opsForValue();
return operation.get(key);
}
/**
* 删除单个对象
*
* @param key
*/
public boolean deleteObject(final String key) {
return redisTemplate.delete(key);
}
/**
* 删除集合对象
*
* @param collection 多个对象
* @return
*/
public boolean deleteObject(final Collection collection) {
return redisTemplate.delete(collection) > 0;
}
/**
* 缓存List数据
*
* @param key 缓存的键值
* @param dataList 待缓存的List数据
* @return 缓存的对象
*/
public <T> long setCacheList(final String key, final List<T> dataList) {
Long count = redisTemplate.opsForList().rightPushAll(key, dataList);
return count == null ? 0 : count;
}
/**
* 获得缓存的list对象
*
* @param key 缓存的键值
* @return 缓存键值对应的数据
*/
public <T> List<T> getCacheList(final String key) {
return redisTemplate.opsForList().range(key, 0, -1);
}
/**
* 缓存Set
*
* @param key 缓存键值
* @param dataSet 缓存的数据
* @return 缓存数据的对象
*/
public <T> BoundSetOperations<String, T> setCacheSet(final String key, final Set<T> dataSet) {
BoundSetOperations<String, T> setOperation = redisTemplate.boundSetOps(key);
Iterator<T> it = dataSet.iterator();
while (it.hasNext()) {
setOperation.add(it.next());
}
return setOperation;
}
/**
* 获得缓存的set
*
* @param key
* @return
*/
public <T> Set<T> getCacheSet(final String key) {
return redisTemplate.opsForSet().members(key);
}
/**
* 缓存Map
*
* @param key
* @param dataMap
*/
public <T> void setCacheMap(final String key, final Map<String, T> dataMap) {
if (dataMap != null) {
redisTemplate.opsForHash().putAll(key, dataMap);
}
}
/**
* 获得缓存的Map
*
* @param key
* @return
*/
public <T> Map<String, T> getCacheMap(final String key) {
return redisTemplate.opsForHash().entries(key);
}
/**
* 往Hash中存入数据
*
* @param key Redis键
* @param hKey Hash键
* @param value 值
*/
public <T> void setCacheMapValue(final String key, final String hKey, final T value) {
redisTemplate.opsForHash().put(key, hKey, value);
}
/**
* 获取Hash中的数据
*
* @param key Redis键
* @param hKey Hash键
* @return Hash中的对象
*/
public <T> T getCacheMapValue(final String key, final String hKey) {
HashOperations<String, String, T> opsForHash = redisTemplate.opsForHash();
return opsForHash.get(key, hKey);
}
/**
* 获取多个Hash中的数据
*
* @param key Redis键
* @param hKeys Hash键集合
* @return Hash对象集合
*/
public <T> List<T> getMultiCacheMapValue(final String key, final Collection<Object> hKeys) {
return redisTemplate.opsForHash().multiGet(key, hKeys);
}
/**
* 删除Hash中的某条数据
*
* @param key Redis键
* @param hKey Hash键
* @return 是否成功
*/
public boolean deleteCacheMapValue(final String key, final String hKey) {
return redisTemplate.opsForHash().delete(key, hKey) > 0;
}
/**
* 获得缓存的基本对象列表
*
* @param pattern 字符串前缀
* @return 对象列表
*/
public Collection<String> keys(final String pattern) {
return redisTemplate.keys(pattern);
}
}
日志
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<!-- 日志存放路径 -->
<!-- <property name="log.path" value="/data/feishu-chatgpt/logs" />-->
<property name="log.path" value="D:\\logs\\feishu-chatgpt"/>
<!-- 日志输出格式 -->
<property name="log.pattern" value="%d{HH:mm:ss.SSS} [%thread] %-5level %logger{20} - [%method,%line] - %msg%n"/>
<!-- 控制台输出 -->
<appender name="console" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<pattern>${log.pattern}</pattern>
</encoder>
</appender>
<!-- 系统日志输出 -->
<appender name="file_info" class="ch.qos.logback.core.rolling.RollingFileAppender">
<file>${log.path}/sys-info.log</file>
<!-- 循环政策:基于时间创建日志文件 -->
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<!-- 日志文件名格式 -->
<fileNamePattern>${log.path}/sys-info.%d{yyyy-MM-dd}.log</fileNamePattern>
<!-- 日志最大的历史 60天 -->
<maxHistory>60</maxHistory>
</rollingPolicy>
<encoder>
<pattern>${log.pattern}</pattern>
</encoder>
<filter class="ch.qos.logback.classic.filter.LevelFilter">
<!-- 过滤的级别 -->
<level>INFO</level>
<!-- 匹配时的操作:接收(记录) -->
<onMatch>ACCEPT</onMatch>
<!-- 不匹配时的操作:拒绝(不记录) -->
<onMismatch>DENY</onMismatch>
</filter>
</appender>
<appender name="file_error" class="ch.qos.logback.core.rolling.RollingFileAppender">
<file>${log.path}/sys-error.log</file>
<!-- 循环政策:基于时间创建日志文件 -->
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<!-- 日志文件名格式 -->
<fileNamePattern>${log.path}/sys-error.%d{yyyy-MM-dd}.log</fileNamePattern>
<!-- 日志最大的历史 60天 -->
<maxHistory>60</maxHistory>
</rollingPolicy>
<encoder>
<pattern>${log.pattern}</pattern>
</encoder>
<filter class="ch.qos.logback.classic.filter.LevelFilter">
<!-- 过滤的级别 -->
<level>ERROR</level>
<!-- 匹配时的操作:接收(记录) -->
<onMatch>ACCEPT</onMatch>
<!-- 不匹配时的操作:拒绝(不记录) -->
<onMismatch>DENY</onMismatch>
</filter>
</appender>
<!-- 用户访问日志输出 -->
<appender name="sys-user" class="ch.qos.logback.core.rolling.RollingFileAppender">
<file>${log.path}/sys-user.log</file>
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<!-- 按天回滚 daily -->
<fileNamePattern>${log.path}/sys-user.%d{yyyy-MM-dd}.log</fileNamePattern>
<!-- 日志最大的历史 60天 -->
<maxHistory>60</maxHistory>
</rollingPolicy>
<encoder>
<pattern>${log.pattern}</pattern>
</encoder>
</appender>
<!-- 系统模块日志级别控制 -->
<logger name="com.gxsldl" level="info"/>
<!-- Spring日志级别控制 -->
<logger name="org.springframework" level="warn"/>
<root level="info">
<appender-ref ref="console"/>
</root>
<!--系统操作日志-->
<root level="info">
<appender-ref ref="file_info"/>
<appender-ref ref="file_error"/>
</root>
<!--系统用户操作日志-->
<logger name="sys-user" level="info">
<appender-ref ref="sys-user"/>
</logger>
</configuration>
2023-05-31:修改为可根据会话上下文回答问题
- QueryController 中的 message() 方法
获取飞消息中的 openId,并在 queryChat()中将openId作为redis缓存键值,保存用户的提示的内容数组
/**
* 接收消息
* @param body
* @return
*/
@PostMapping(value = "/message")
public String message(@RequestBody String body) {
log.info("收到飞书消息:{}", body);
JSONObject jsonObject = JSONObject.parseObject(body);
String challenge = jsonObject.getString("challenge");
if(challenge != null){
//飞书开放平台上配置【事件订阅】时请求验证
JSONObject rJson = new JSONObject();
rJson.put("challenge", challenge);
return rJson.toString();
}
JSONObject header = jsonObject.getJSONObject("header");
//请头为空,或消息已经回复过,则不再回复
if(eventCheck(header)){
return null;
}
String eventType = header.getString("event_type");
if ("im.message.receive_v1".equals(eventType)) {
JSONObject event = jsonObject.getJSONObject("event");
JSONObject message = event.getJSONObject("message");
String messageType = message.getString("message_type");
if ("text".equals(messageType)) {
String messageId = message.getString("message_id");
String content = message.getString("content");
JSONObject contentJson = JSONObject.parseObject(content);
String text = contentJson.getString("text");
FeishuResponse feishuResponse = new FeishuResponse();
feishuResponse.setMessageId(messageId);
feishuResponse.setQuery(text);
log.debug("投递用户消息,{}", JSON.toJSONString(feishuResponse));
JSONObject sender = event.getJSONObject("sender");
JSONObject senderId = sender.getJSONObject("sender_id");
String openId = senderId.getString("open_id");
// String query = queryCompletions(content, openId); //text-davinci-003 模型
String query = queryChat(content, openId); // gpt-3.5-turbo 模型
reply(feishuResponse, query);
} else {
log.error("非文本消息");
}
}
return "success";
}
- QueryController 中的 queryChat() 方法
- 将用户提问的每个问题添加到数组中,角色
role = user
- 将chatgpt回答的内容保存到数组中,角色
role = assistant
- 将问答内容数组保存到redis中,每次提问将整个数组作为提问参数传递
- 将用户提问的每个问题添加到数组中,角色
/**
* v1/chat/completions 下的模型调用方法
*/
public String queryChat(String queryMsg, String openId){
Map<String,String> headers = new HashMap<String,String>();
headers.put("Content-Type","application/json");
JSONObject json = new JSONObject();
//选择模型
json.put("model","gpt-3.5-turbo");
//添加我们需要输入的内容
JSONObject msg = new JSONObject();
msg.put("role", "user");
msg.put("content", queryMsg);
JSONArray array = null;
String key = RedisConstant.OPENID_MODEL_GPT_35_TURBO + openId;
if(redisCache.hasKey(key)){
array = redisCache.getCacheObject(key);
//只保留10条历史提问内容
if (array.size() >= 10){
array.remove(0);
}
}else{
array = new JSONArray();
}
array.add(msg);
json.put("messages", array);
json.put("temperature",0);
json.put("max_tokens",2048);
json.put("top_p",0.5);
json.put("frequency_penalty",0.8);
json.put("presence_penalty",0.5);
try{
Proxy proxy = Proxys.http("127.0.0.1", proxyPort);
HttpResponse response = HttpRequest.post("https://api.openai.com/v1/chat/completions") //gpt-3.5-turbo
.headerMap(headers, false)
.bearerAuth(openaiToken)
.setProxy(proxy)
.body(String.valueOf(json))
.timeout(600000)
.execute();
String result = response.body();
log.debug("query:{},获取响应:{}", queryMsg, JSON.toJSONString(result));
JSONObject parseObject = JSONObject.parseObject(result);
JSONArray choices = parseObject.getJSONArray("choices");
JSONObject resMsg = choices.getJSONObject(0).getJSONObject("message");
//助理角色
JSONObject res = new JSONObject();
res.put("role", "assistant");
res.put("content", resMsg.getString("content"));
array.add(res);
//存入缓存
redisCache.setCacheObject(key, array);
return resMsg.getString("content");
} catch (IORuntimeException e){
log.error("openai 接口调用异常:{}", e.getMessage());
if(e.getMessage().contains("Connection timed out")){
return "Error: 连接超时,请检查vpn节点是否正常";
}
return "Error: 连接被拒绝,请检查vpn是否已开启";
} catch (Exception e){
e.printStackTrace();
log.error("openai 接口调用异常:{}", e.getMessage());
return "openai API 调用异常";
}
}
- RedisConstant 类添加属性:OPENID_MODEL_GPT_35_TURBO
OPENID_MODEL_GPT_35_TURBO 用做redis缓存键
public class RedisConstant {
public static final Integer MESSAGE_EVENT_ID_EXPIRE = 30;
public static final String OPENID_MODEL_GPT_35_TURBO = "openid:gpt35turbo:";
}