一、总体简介
光学图像的相关文献在1995年到2021年内共计527篇,主要集中在自动化技术、计算机技术、无线电电子学、电信技术、物理学 等领域,其中期刊论文74篇、会议论文25篇、专利文献428篇;
相关期刊70种,包括中国高新区、湘潭大学自然科学学报、电子科技大学学报等;
相关会议25种,包括2014年中国宇航学会深空探测技术专业委员会第十一届学术年会、第二届中国指挥控制大会、全国第十一届DSP应用技术学术会议等;
光学图像的相关文献由900位作者贡献,包括丁启禄、刘金福、林志玮等。
二、光学图像类论文发文量统计

三、光学图像类论文发文趋势统计
中文期刊文献发文趋势

中文会议文献发文趋势

中文专利文献发文趋势

四、主题主要研究者
丁启禄、刘金福、林志玮、涂伟豪、林金石、柳菁、聂建英、黄炎和、CHEN Xiao-yan、Chiung-Shiuan、Ejaz、Hussain、Jie、Kim、KyoHyouk、LI Bai-lin、Serkan、Shan、ShawnCarlson等学者
五、相关发表期刊
包括《中国新通信》、《物理实验》、《深空探测学报》、《应用光学》、《中国高新区》、《湘潭大学自然科学学报》、《电子科技大学学报》、《福州大学学报(自然科学版)》、《合肥学院学报(自然科学版)》、《辽宁大学学报(自然科学版)》、《地理空间信息》、《国土资源遥感》、《海洋学报(中文版)》、《遥感信息》、《中国学术期刊文摘》等期刊
六、相关发表会议
《2003遥感科技论坛暨中国遥感应用协会2003年年会》
《2005年中国合成孔径雷达会议》
《2008中国兵工光学与光电子学学术交流会》
《2009年江苏省“光科学与技术”博士生学术论坛》
《2014年中国宇航学会深空探测技术专业委员会第十一届学术年会》
《2016年全国军事微波、太赫兹、电磁兼容技术学术会议》
......
七、中文期刊文献示例
1.<a href="https://http://www.zhangqiaokeyan.com/academic-journal-cn_popular-standardization_thesis/0201280060174.html?from=lzhh-2-2"> 基于光学图像的筛网检测技术研究
《大众标准化》|2020年第020期
在科学研究和工业生产过程中筛网都有着非常重要的作用,筛网广泛应用于生物科技、医药以及航天材料等领域,但是目前使用筛网进行准确检测已经成为计量、生产过程中需要解决的主要问题之一.文章在研究过程中严格按照国家标准,对筛网自身特点和工作环境进行了研究,在其中加入现代光学技术,提升了筛网图像参数的准确度.文章对现代光学图像处理技术现状进行了介绍,之后对传统形态处理技术进行了深入研究,找出了边缘检测技术中存在的不足,使用像素扫描的方法确定了像素距离,得出了准确的筛网现实尺寸.通过最终实验证明,文章设计的测试系统具有完善性和合理性,可以应对定位不精准的问题,满足了筛网检测需求.
2.基于FC-DenseNet的低空航拍光学图像树种识别
《国土资源遥感》|2019年第003期
使用低空遥感图像进行图像识别为森林调查和监测提供了新的技术契机.基于无人机低空航拍光学图像,以福建省安溪县崩岗区为研究区,建立FC-DenseNet模型进行树种识别.首先,利用Dense模块提取树种图像特征并增强深层网络信息,透过下采样模块降低图像维度,凸显图像的纹理特征和光谱特征;然后,使用上采样模块还原预测图至原始图像大小,并融合浅层Dense模块信息的丰富特征;最后,采用Softmax分类器实现像素分类,完成树种识别.结果显示,基于低空航拍光学图像,FC-DenseNet模型能够准确区分植被与非植被,定位其空间分布特征,其中,FC-DenseNet-103模型的二分类识别精度为92.1%,表明FC-DenseNet模型加深网络深度后具有较好的识别效果;将植被与非植被细分为13类,FC-DenseNet-103模型的平均识别正确率达到75.67%.研究结果表明,基于低空航拍光学图像建立的FC-DenseNet模型具有较高的树种分类精度.由于低空航拍光学图像的成本较低,数据获取费用小,时间周期短,可便于森林资源调查和森林树种检测,为深度学习在树种识别领域的应用提供了新思路。
《中国高新区》|2019年第006期
图像清晰图很容易受到光照变化的干扰,为了保证光学图像的清晰度,一种基于边缘特征的光学图像清晰度判定方法被提出.通过相关技术方法的使用,根据边缘特征对光学图像清晰度进行计算,以此来提高光学图像的清晰度.本文通过对基于边缘特征的光学图像清晰度判定方法进行分析,希望对提高判定结果的准确性有所帮助.
《林业调查规划》|2018年第002期
以勐腊县为研究区,基于TerraSAR-X卫星的全极化SAR数据以及谷歌高清卫星影像图,对橡胶林的后向散射系数以及其纹理特征进行提取分析,采用决策树分类方法对勐腊县的橡胶林进行分类识别.研究结果表明:全极化TerraSAR数据的HH、HV、VH、VV的后向散射及其之间的计算是构建决策树算法,实现森林、农用地、水体和城市建设用地分类的重要基础;橡胶林作为一种特殊的人工林,其具有固定的行株距以及特有的纹理特征,能把橡胶林和天然林更好地区分开;利用结合SAR数据后向散射及光学图像纹理特征的决策树分类方法对橡胶林进行提取,总体精度为87.6%,Kappa系数为0.81,橡胶林的生产者精度和用户精度均达到90%以上.
《福建林学院学报》|2018年第004期
使用无人机进行低空航拍,快速取得大范围的植被图像,结合多元HoG特征进行植被类型识别.首先,利用Gabor滤波器提取图像的纹理信息,HSV和Lab颜色空间转化提取图像的颜色信息.其次,将图像分割为N个单元格(cell),基于纹理与颜色信息计算每个单元格的方向梯度直方图(HoG)特征,形成多元HoG特征.最后,以单元格为分类单位,结合随机森林机器学习算法,建立植被类型识别模型.以福建省安溪县山区为研究区域,结果表明:利用无人机低空航拍的光学影像结合多元HoG特征进行植被类型识别是可行的;对于植被与非植被识别,其最高分类正确率达到96.04%;20 m航拍下,植被类型识别率最高,为82.44%,随着航拍高度的升高,模型识别效果呈现下降趋势.进一步采集福建省长汀县山区的植被航拍影像为测试数据,证明模型对于不同地区植被类型识别的稳定性,其识别精度最高可达73.31%,正确率无显著差异.本研究采用无人机载光学相机获取植被光学图像数据,数据获取方便且所需费用较低;提出的植被类型识别模型具有较高的精度;对于不同地区的植被类型识别具有较好的稳健性,可方便应用于野外森林树种监控与管理.根据不同高度模型识别结果,航拍高度不宜过高,航拍高度以20 m为宜.
......等等
八、中文专利示例
本申请实施例提供一种光学图像稳定器、光学图像稳定器系统,及其控制方法。所述光学图像稳定器和系统可以用于电子设备的相机模组中,其中所述光学图像稳定器包括致动部件和图像传感器,所述致动部件包括承载台、基底、第一电极、第二电极。所述承载台承载所述图像传感器,所述承载台朝向所述基底的表面设置所述第一电极,所述基底朝向所述承载台的表面设置所述第二电极。在冲击即将发生时,利用所述第一,第二电极静电吸合作用,设置所述第一电极的承载台与设置所述第二电极的基底吸合,使所述光学图像稳定器无悬浮结构。在冲击发生时,能够使光学图像稳定器不受损坏。
一种光学图像采集单元(10)、光学图像采集系统、显示屏和电子设备。该光学图像采集单元(10)包括:光电感应单元(201),设置在显示屏的薄膜晶体管TFT层(200);光学会聚器件(401),设置在所述TFT层(200)上方;光阑(301),设置在所述TFT层(200)和所述光学会聚器件(401)之间,其中,所述光阑(301)设置有窗口(303);所述光学会聚器件(401)用于将从所述显示屏上方的目标物体反射的光信号传输至所述窗口(303),所述光信号经由所述窗口(303)传输至所述光电感应单元(201)。该方案能够提升光学图像采集的性能。
本申请实施例公开了一种光学图像采集单元、光学图像采集系统和电子设备。该光学图像采集单元包括:微镜头;挡光层,设置于所述微镜头下方,其中,所述挡光层设置有窗口;光电传感器,设置于所述挡光层下方,其中,所述微镜头用于将来自所述微镜头上方的光信号汇聚至所述窗口,所述光信号经由所述窗口传输至所述光电传感器。本申请实施例的技术方案,能够提升光学图像采集产品的性能。
......等等