>>> a = np.array([1,2,3,4,5,6,7,8,9])
>>>a
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
>>>a.shape
(9,)
>>> a.shape[0]
9
>>>type(a.shape)
<class 'tuple'>
>>> type(a.shape[0])
<class 'int'>
我们这边创建一个简单的一维数组。
使用.shape时输出了他的维度,这个返回的类型的元组类型。
使用.shape[0]时输出了以为数组中元素的个数,这个返回的类型的int形。
当数组类型是二维数组时
>>>a = np.array([[1,2,3,],[6,7,8]])
>>> a.shape
(2, 3)
>>>a.shape[0]
2
>>>type(a.shape)
<class 'tuple'>
>>>type(a.shape[0])
<class 'int'>
创建一个二维数组
使用.shape时,返回他的维度信息,2行3列,类型为元组类型
使用.shape[0]时,返回行数,2行,类型为整形。
这里面的核心其实是元组可以被索引。
tuple元组支撑索引,所以一维数组的第.shape[0]个既为为元素的个数。
二维中的.shape[0],代表数组的行数。
元组不改变元组元素中本身数据的类型。