142.环形链表[medium]+floyd判圈法

题解

class Solution {
public:
    ListNode *detectCycle(ListNode *head) {
        ListNode *fast = head;
        ListNode *slow = head;
        while (fast != nullptr && fast->next!= nullptr){
            fast = fast->next->next;
            slow = slow->next;
            if(fast == slow){
                fast = head;
                while(fast != slow){
                    fast = fast->next;
                    slow = slow->next;
                }
                return fast;
            }
        }
        return nullptr;
    }
};

思路

我没什么思路,就是快慢链表floyd环路,学就是了。
一个快指针每次前进两个节点,一个慢指针一次前进一个节点,如果快指针能走到头,那么说明没有环路,如果快指针走不到头,快指针和慢指针必相遇。快慢指针第一次相遇时把快指针移到链表头,快慢指针第二次相遇的节点就是环路开始的节点。
设头节点到环路开始节点距离为 m m m慢节点在环路里走了不足一圈的距离为 k k k,那么当快结点和慢节点第一次相遇时
2 ∗ ( m + k + n 1 ∗ l ) = m + k + n 2 ∗ l 2*(m+k+n1*l)=m+k+n2*l 2(m+k+n1l)=m+k+n2l
那么 m + k = ( n 2 − 2 ∗ n 1 ) ∗ l m+k=(n2-2*n1)*l m+k=(n22n1)l
l l l为环路长, n 1 n1 n1为慢节点整圈数环路, n 2 n2 n2为快节点整圈数。
现在慢节点在圈中 k k k的位置上,再走 m m m必能回到环路头,所以快结点从链表头开始走再走到环路头也正好是 m m m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值