用高斯混合模型分类三维数据

本文介绍了如何使用高斯混合模型(GMM)结合期望极大(EM)算法对三维数据进行分类。详细阐述了EM算法的原理,强调Q函数在迭代过程中的关键作用。通过Python的sklearn库实现GMM,并利用T-SNE降维对分类结果进行可视化展示。同时,提供了相关参考资料供进一步学习。
摘要由CSDN通过智能技术生成

理论

高斯混合模型的和详细的EM算法推导见《统计学习方法》
这里说明一点:

EM算法叫期望极大算法,是先在当前参数下求得完全分布对于隐变量的期望,然后求解对数似然的最大化问题,以获得新一轮迭代的参数。
其中核心在于Q函数 Q ( θ , θ ( i ) ) Q(\theta,\theta^{(i)}) Q(θ,θ(i))
Q函数是完全数据的对数似然函数 l o g P ( Y , Z ∣ θ ) logP(Y,Z|\theta) logP(Y,Zθ),关于在给定的观测数据 Y Y Y和当前参数 θ ( i ) \theta^{(i)} θ(i)下对未观测数据 Z

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值