k近邻法学习总结

一、前述

K近邻法(k-nearest neighbor,k-NN)是一种基本分类与回归方法。分类时,对新的实例,根据其k个最近邻的训练实例的类别,通过多数表决等方式进行预测。k近邻法不具有显示学习过程,其三个基本要素是:k值的选择、距离度量及分类决策规则。

二、k近邻法介绍
I.模型

k近邻法中,当训练集、距离量度(如欧氏距离)、k值及分类决策规则(如多数表决)确定后,对于任何一个新的输入实例,它所属的类唯一地确定。这相当于根据上述要素将特征空间划分为一些子空间,确定子空间里的每个点所属的类。特征空间中,对每个训练实例点 x i x_{i} xi,距离该点比其他点更近的所有点组成一个区域,叫作单元(cell)。每个训练实例点拥有一个单元,所有训练实例点的单元构成对特征空间的一个划分。最近邻法将实例 x i x_{i} xi的类 y i y_{i} yi作为其单元中所有点的类标记(class label)。这样,每个单元的实例点的类别是确定的。
(a)距离量度
特征空间中两个实例点的距离反应了两个实例点的相似程度。k近邻模型的特征空间一般是n维实数向量空间 R n R^{n} Rn。使用的距离是欧式距离,但也可以是其他距离,如更一般的 L p L_{p} Lp距离或闵可夫斯基距离(Minkowski distance),也称p范数(该点与该空间原点的距离),它常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小,其公式如下: L p ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ p ) 1 p L_{p}(x_{i},x_{j})=(\sum_{l=1}^{n}\left | x_{i} ^{(l)}-x_{j} ^{(l)} \right |^{p})^{\frac {1} {p}} Lp(xi,xj)=(l=1nxi(l)xj(l)p)p1
类似的,当p=2时,称该距离为欧式距离;当p=1时,称该距离为曼哈顿距离(城区距离);当p= ∞ \infty 时,称该距离为棋盘距离。
(b)k值选择
k值的选择会对k近邻法的结果产生重大影响。
如果选择较小的k值,就相当于用较小的领域中的训练实例进行预测,"学习"的近似误差会减小,只有与输入实例较近(相似的)训练实例才会对预测结果起作用。但缺点是"学习"的估计误差会增大,如果近邻的实例点恰好是噪声,预测就会出错。换句话说,k值的减小就意味着整体模型变得复杂,容易发生过拟合。
如果选取较大的k值,就相当于用较大领域中的训练实例进行预测。其优点是减少学习的估计误差,但缺点是学习的近似误差会增大。与输入实例较远的训练实例也会对预测起作用,使预测发生错误。k值的增大就意味着整体的模型变得简单。
©分类决策规则
k近邻法中的分类决策规则往往是多数表决,即由输入实例的k个邻近的训练实例中的多数类决定输入实例的类。
如果分类的损失函数为0-1损失函数,可以将n维实数空间划分化k个超矩形区域,则分类函数为: f : R n → { c 1 , c 2 , ⋯   , c K } f:R^{n}\rightarrow \left \{ c_{1},c_{2},\cdots,c_{K} \right \} f:Rn{c1,c2,,cK}对给定的实例 x ∈ χ x\in\chi xχ,其最近邻的k个训练实例点构成集合 N k ( x ) N_{k}(x) Nk(x)。如果涵盖 N k ( x ) N_{k}(x) Nk(x)的区域的类别是 c j c_{j} cj,那么误分类率是 1 k ∑ x i ∈ N k ( x ) I ( y i ≠ c j ) = 1 − 1 k ∑ x i ∈ N k ( x ) I ( y i = c j ) \frac{1}{k}\sum_{x_{i}\in N_{k}(x)}^{}I(y_{i}\neq c_{j})=1-\frac{1}{k}\sum_{x_{i}\in N_{k}(x)}^{}I(y_{i}=c_{j}) k1xiNk(x)I(yi=cj)=1k1xiNk(x)I(yi=cj)要使误分类率最小即经验风险最小,就要使 ∑ x i ∈ N k ( x ) I ( y i = c j ) \sum_{x_{i}\in N_{k}(x)}^{}I(y_{i}=c_{j}) xiNk(x)I(yi=cj)最大,所以多数表决规则等价于经验风险最小化。

II.策略

多数表决规则等价于经验风险最小化。

III.算法

当训练实例点集个数N大于实例中特征向量维数k时,采用构造kd树的方法进行快速k近邻搜索,可以提高k近邻搜索的效率。
但训练实例点集个数N与实例中特征向量维数k接近时,采用线性扫描方式与kd树方式效率相差不大。

(a)构造平衡kd树:
(1)选择 x ( 1 ) x^{(1)} x(1)为坐标轴,以T中所有实例的 x ( 1 ) x^{(1)} x(1)坐标的中位数为切分点,将根结点对应的超矩形区域切分为两个子区域。切分由通过切分点并与坐标轴 x ( 1 ) x^{(1)} x(1)垂直的超平面实现,由根结点生成深度为1的左、右子结点。
(2)重复:对深度为j的结点,选择 x ( l ) x^{(l)} x(l)为切分的坐标轴, l = j ( m o d [ k ] ) + 1 l=j(mod[k])+1 l=j(mod[k])+1,继续按中位点的统计规则划分超矩形区域。
(3)直到两个子区域没有实例存在时停止。从而形成平衡kd树。

(b)kd树最近邻检索
(1)在kd树中找出包含目标点x的叶结点:从根结点出发,递归向下访问kd树。若目标点x当前维的坐标小于切分点坐标,则移动到左子结点,否则移动到右子结点。直到子结点为叶结点为止。
(2)以此叶结点为"当前最近点"。
(3)递归地向上回退,在每个结点进行以下操作:
①如果该结点保存的实例点比当前最近点距离目标点更近,则以该实例点为"当前最近点"。
②当前最近点一定存在于该结点一个子结点对应的区域。检查该子结点的父结点的另一子结点对应的区域是否有更近的点。具体地,检查另一子结点对应的区域是否与以目标点为球心、以目标点与"当前最近点"间的距离为半径的超球体相交。
如果相交,可能在另一个子结点对应的区域内存在距目标点更近的点,移动到另一个子节点。接着递归进行最邻近搜索。
③当退回到根结点时,搜索结束。

三、总结

k近邻法模型采用多数表决规则,即达到了经验风险最小化,将n维实数向量空间划分成k个类别,模型算法的关键是通过kd树寻找输入实例点的k个最邻近实例点,具体要通过构造kd树和对kd树检索来实现。同样的,与数据结构类似,kd树属于二叉树,算法特点是通过牺牲了空间复杂度来降低时间复杂度,以求在大量样本容量中快速找到最邻近的k个实例点。

参考文献

[1]李航.统计学习方法(第2版)[M].北京:清华大学出版社,2019.11.

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值