[153. 寻找旋转排序数组中的最小值][middle] [二分查找]

[153. 寻找旋转排序数组中的最小值]
(https://leetcode-cn.com/problems/find-minimum-in-rotated-sorted-array/)

描述:

已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:
若旋转 4 次,则可以得到 [4,5,6,7,0,1,2]
若旋转 7 次,则可以得到 [0,1,2,4,5,6,7]
注意,数组 [a[0], a[1], a[2], …, a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], …, a[n-2]] 。

给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。

示例 1:

输入:nums = [3,4,5,1,2]
输出:1
解释:原数组为 [1,2,3,4,5] ,旋转 3 次得到输入数组。
示例 2:

输入:nums = [4,5,6,7,0,1,2]
输出:0
解释:原数组为 [0,1,2,4,5,6,7] ,旋转 4 次得到输入数组。
示例 3:

输入:nums = [11,13,15,17]
输出:11
解释:原数组为 [11,13,15,17] ,旋转 4 次得到输入数组。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/find-minimum-in-rotated-sorted-array
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

寻找数组升序发生变化的位置

方法一: 循环遍历

    public int findMin(int[] nums) {
        int result=nums[0];
        for(int i=0;i<nums.length-1;i++){
            if (nums[i] > nums[i+1]) {
                result=nums[i+1];
                break;
            }
        }
        return result;
    }

时间复杂度 O(n)

方法二:二分查找

用二分法查找,需要始终将目标值(这里是最小值)套住,并不断收缩左边界或右边界。

左、中、右三个位置的值相比较,有以下几种情况:

左值 < 中值, 中值 < 右值 :没有旋转,最小值在最左边,可以收缩右边界

    右
 中


左值 > 中值, 中值 < 右值 :有旋转,最小值在左半边,可以收缩右边界




左值 < 中值, 中值 > 右值 :有旋转,最小值在右半边,可以收缩左边界



左值 > 中值, 中值 > 右值 :单调递减,不可能出现




分析前面三种可能的情况,会发现情况1、2是一类,情况3是另一类。

如果中值 < 右值,则最小值在左半边,可以收缩右边界。
如果中值 > 右值,则最小值在右半边,可以收缩左边界。
通过比较中值与右值,可以确定最小值的位置范围,从而决定边界收缩的方向。

而情况1与情况3都是左值 < 中值,但是最小值位置范围却不同,这说明,如果只比较左值与中值,不能确定最小值的位置范围。

所以我们需要通过比较中值与右值来确定最小值的位置范围,进而确定边界收缩的方向。

接着分析解法里的一些问题:

首先是while循环里的细节问题。

这里的循环不变式是left < right, 并且要保证左闭右开区间里面始终套住最小值。

中间位置的计算:mid = left + (right - left) / 2
这里整数除法是向下取整的地板除,mid更靠近left,
再结合while循环的条件left < right,
可以知道left <= mid,mid < right,
即在while循环内,mid始终小于right。

因此在while循环内,nums[mid]要么大于要么小于nums[right],不会等于。

这样else {right = mid;}这句判断可以改为更精确的
else if (nums[mid] < nums[right]) {right = mid;}。

再分析一下while循环退出的条件。

如果输入数组只有一个数,左右边界位置重合,left == right,不会进入while循环,直接输出。

如果输入数组多于一个数,循环到最后,会只剩两个数,nums[left] == nums[mid],以及nums[right],这里的位置left == mid == right - 1。

如果nums[left] == nums[mid] > nums[right],则左边大、右边小,
需要执行left = mid + 1,使得left == right,左右边界位置重合,循环结束,nums[left]与nums[right]都保存了最小值。

如果nums[left] == nums[mid] < nums[right],则左边小、右边大,
会执行right = mid,使得left == right,左右边界位置重合,循环结束,nums[left]、nums[mid]、nums[right]都保存了最小值。

细化了的代码:

class Solution {
    public int findMin(int[] nums) {
        int left = 0;
        int right = nums.length - 1;                /* 左闭右闭区间,如果用右开区间则不方便判断右值 */ 
        while (left < right) {                      /* 循环不变式,如果left == right,则循环结束 */
            int mid = left + (right - left) / 2;    /* 地板除,mid更靠近left */
            if (nums[mid] > nums[right]) {          /* 中值 > 右值,最小值在右半边,收缩左边界 */ 
                left = mid + 1;                     /* 因为中值 > 右值,中值肯定不是最小值,左边界可以跨过mid */ 
            } else if (nums[mid] < nums[right]) {   /* 明确中值 < 右值,最小值在左半边,收缩右边界 */ 
                right = mid;                        /* 因为中值 < 右值,中值也可能是最小值,右边界只能取到mid处 */ 
            }
        }
        return nums[left];    /* 循环结束,left == right,最小值输出nums[left]或nums[right]均可 */     
    }
};


作者:armeria-program
链接:https://leetcode-cn.com/problems/find-minimum-in-rotated-sorted-array/solution/er-fen-cha-zhao-wei-shi-yao-zuo-you-bu-dui-cheng-z/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

九城风雪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值