[153. 寻找旋转排序数组中的最小值]
(https://leetcode-cn.com/problems/find-minimum-in-rotated-sorted-array/)
描述:
已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:
若旋转 4 次,则可以得到 [4,5,6,7,0,1,2]
若旋转 7 次,则可以得到 [0,1,2,4,5,6,7]
注意,数组 [a[0], a[1], a[2], …, a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], …, a[n-2]] 。给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。
示例 1:
输入:nums = [3,4,5,1,2]
输出:1
解释:原数组为 [1,2,3,4,5] ,旋转 3 次得到输入数组。
示例 2:输入:nums = [4,5,6,7,0,1,2]
输出:0
解释:原数组为 [0,1,2,4,5,6,7] ,旋转 4 次得到输入数组。
示例 3:输入:nums = [11,13,15,17]
输出:11
解释:原数组为 [11,13,15,17] ,旋转 4 次得到输入数组。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/find-minimum-in-rotated-sorted-array
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
寻找数组升序发生变化的位置
方法一: 循环遍历
public int findMin(int[] nums) {
int result=nums[0];
for(int i=0;i<nums.length-1;i++){
if (nums[i] > nums[i+1]) {
result=nums[i+1];
break;
}
}
return result;
}
时间复杂度 O(n)
方法二:二分查找
用二分法查找,需要始终将目标值(这里是最小值)套住,并不断收缩左边界或右边界。
左、中、右三个位置的值相比较,有以下几种情况:
左值 < 中值, 中值 < 右值 :没有旋转,最小值在最左边,可以收缩右边界
右
中
左
左值 > 中值, 中值 < 右值 :有旋转,最小值在左半边,可以收缩右边界
左
右
中
左值 < 中值, 中值 > 右值 :有旋转,最小值在右半边,可以收缩左边界
中
左
右
左值 > 中值, 中值 > 右值 :单调递减,不可能出现
左
中
右
分析前面三种可能的情况,会发现情况1、2是一类,情况3是另一类。
如果中值 < 右值,则最小值在左半边,可以收缩右边界。
如果中值 > 右值,则最小值在右半边,可以收缩左边界。
通过比较中值与右值,可以确定最小值的位置范围,从而决定边界收缩的方向。
而情况1与情况3都是左值 < 中值,但是最小值位置范围却不同,这说明,如果只比较左值与中值,不能确定最小值的位置范围。
所以我们需要通过比较中值与右值来确定最小值的位置范围,进而确定边界收缩的方向。
接着分析解法里的一些问题:
首先是while循环里的细节问题。
这里的循环不变式是left < right, 并且要保证左闭右开区间里面始终套住最小值。
中间位置的计算:mid = left + (right - left) / 2
这里整数除法是向下取整的地板除,mid更靠近left,
再结合while循环的条件left < right,
可以知道left <= mid,mid < right,
即在while循环内,mid始终小于right。
因此在while循环内,nums[mid]要么大于要么小于nums[right],不会等于。
这样else {right = mid;}这句判断可以改为更精确的
else if (nums[mid] < nums[right]) {right = mid;}。
再分析一下while循环退出的条件。
如果输入数组只有一个数,左右边界位置重合,left == right,不会进入while循环,直接输出。
如果输入数组多于一个数,循环到最后,会只剩两个数,nums[left] == nums[mid],以及nums[right],这里的位置left == mid == right - 1。
如果nums[left] == nums[mid] > nums[right],则左边大、右边小,
需要执行left = mid + 1,使得left == right,左右边界位置重合,循环结束,nums[left]与nums[right]都保存了最小值。
如果nums[left] == nums[mid] < nums[right],则左边小、右边大,
会执行right = mid,使得left == right,左右边界位置重合,循环结束,nums[left]、nums[mid]、nums[right]都保存了最小值。
细化了的代码:
class Solution {
public int findMin(int[] nums) {
int left = 0;
int right = nums.length - 1; /* 左闭右闭区间,如果用右开区间则不方便判断右值 */
while (left < right) { /* 循环不变式,如果left == right,则循环结束 */
int mid = left + (right - left) / 2; /* 地板除,mid更靠近left */
if (nums[mid] > nums[right]) { /* 中值 > 右值,最小值在右半边,收缩左边界 */
left = mid + 1; /* 因为中值 > 右值,中值肯定不是最小值,左边界可以跨过mid */
} else if (nums[mid] < nums[right]) { /* 明确中值 < 右值,最小值在左半边,收缩右边界 */
right = mid; /* 因为中值 < 右值,中值也可能是最小值,右边界只能取到mid处 */
}
}
return nums[left]; /* 循环结束,left == right,最小值输出nums[left]或nums[right]均可 */
}
};
作者:armeria-program
链接:https://leetcode-cn.com/problems/find-minimum-in-rotated-sorted-array/solution/er-fen-cha-zhao-wei-shi-yao-zuo-you-bu-dui-cheng-z/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。