kaggle泰坦尼克号

本文前部分参考简书:https://www.jianshu.com/p/06c2ee7e5c68 后半部分对比逻辑回归,随机森林、XGBOOST常见算法的分类准确度。 概述 1912年4月15日,泰坦尼克号在首次航行期间撞上冰山后沉没,2224名乘客和机组人员中有1502人遇难。沉船导致大量...

2019-03-11 09:27:37

阅读数 72

评论数 0

【阿里】一个圆分成N个扇形,有M中颜色,求领域不同色的所有涂色方案数

设F(N,M)为满足的所有方案 N=1时,有M种 N=2时,有M*(M-1)种 N=3时,有M*(M-1)*(M-2)种 当N>=4时: 先考虑所有可以重色的方案:即M*(M-1)*(M-1)*(M-1) 其中包括第一块和最后一块重色的方案,只要减去即可。把第一块...

2019-03-09 18:41:56

阅读数 33

评论数 0

正则化为什么能防止过拟合(重点地方加粗了)

正则化方法:防止过拟合,提高泛化能力 转载:https://www.cnblogs.com/alexanderkun/p/6922428.html 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合)。其直观的表现如下图所示,随着训练过程的进行,模型复...

2019-02-27 21:18:54

阅读数 33

评论数 0

八皇后问题

最近看Python看得都不用tab键了,哈哈。今天看了一个经典问题--八皇后问题,说实话,以前学C、C++的时候有这个问题,但是当时不爱学,没搞会,后来算法课上又碰到,只是学会了思想,应该是学回溯法的时候碰到的。八皇后问题是说要在一个棋盘上放置8个皇后,但是不能发生战争,皇后们都小心眼,都爱争风吃...

2019-02-22 16:05:57

阅读数 54

评论数 0

移植Python2.7到ARM-LINUX嵌入式平台

  最近组内项目需求,要在zynq-7035的arm板子里面搭建python的运行环境,来运行webserver程序,板子的linux 系统是参考米联客的移植教程,移植后是精简版的linux系统,只支持基本的linux系统,板子的交叉编译器是arm-linux-gnueabihf-gcc,这给我...

2018-11-23 17:47:12

阅读数 213

评论数 0

leetcode 20. Valid Parentheses

Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the input string is valid. An input string is valid if: ...

2018-10-23 21:30:45

阅读数 56

评论数 0

1.twosum

最近发现自己代码能力很菜,为了明年秋招能找到合适的工作,决定从现在开始刷LeetCode,开个博客记录一下刷题遇到的问题,也方便后面查看回顾。 Given an array of integers, return indices of the two numbers such that they...

2018-10-10 22:42:14

阅读数 37

评论数 0

pandas ix & iloc &loc 的联系和区别

参考了几个博客,做了以下整理,如有雷同,是我抄别人的。。 参考链接:https://blog.csdn.net/xw_classmate/article/details/51333646 https://blog.csdn.net/hecongqing/article/details/6192...

2018-09-06 09:43:57

阅读数 39

评论数 0

pandas 重新索引

重新索引   pandas对象的一个重要方法是 reindex ,其作用是创建一个适应新索引的新对象。 #reindex函数的参数 reindex(index,method,fill_value,limit,level,copy) #index:用作索引的新序列 #method:插值(...

2018-09-06 08:58:00

阅读数 1941

评论数 0

pandas中关于set_index和reset_index的用法

1.set_index DataFrame可以通过set_index方法,可以设置单索引和复合索引。  DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)  appen...

2018-09-05 14:42:19

阅读数 52

评论数 0

梯度下降(Gradient Descent)

参考链接:http://www.cnblogs.com/pinard/p/5970503.html  在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法做一个完整的总结。 1. 梯度...

2018-09-04 10:26:10

阅读数 55

评论数 0

蒙特卡罗采样算法

3.1 随机模拟 随机模拟 (或者统计模拟) 方法有一个很酷的别名是蒙特卡罗方法(Monte Carlo Simulation)。这个方法的发展始于 20 世纪 40 年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆、冯. 诺依曼、费米、费曼、Nicholas Metropol...

2018-08-29 11:43:03

阅读数 837

评论数 0

如何感性地理解EM算法?

如果使用基于最大似然估计的模型,模型中存在隐变量,就要用EM算法做参数估计。个人认为,理解EM算法背后的idea,远比看懂它的数学推导重要。idea会让你有一个直观的感受,从而明白算法的合理性,数学推导只是将这种合理性用更加严谨的语言表达出来而已。打个比方,一个梨很甜,用数学的语言可以表述为糖分...

2018-08-27 18:13:02

阅读数 44

评论数 0

K-means原理、优化及应用

 K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛。K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体方法。包括初始化优化K-Means++, 距离计算优化elkan K-Means算法和大数据情况...

2018-08-23 14:48:59

阅读数 2575

评论数 0

numpy.random用法

最近发现numpy的random用法有很多,不注意很容易混淆,今天参考几个博客内容整理了一下。 numpy.random.randint low、high、size三个参数。默认high是None,如果只有low,那范围就是[0,low)。如果有high,范围就是[low,high)。 &a...

2018-08-23 11:25:33

阅读数 4124

评论数 0

手把手教写出XGBoost实战程序

简单介绍: 这是一个真实的比赛。赛题来源是天池大数据的 "商场中精确定位用户所在店铺"。原数据有114万条,计算起来非常困难。为了让初学者有一个更好的学习体验,也更加基础,我将数据集缩小了之后放在这里,密码:ndfd。供大家下载。 在我的数据中,数据是这样子...

2018-08-14 21:46:21

阅读数 2439

评论数 4

XGBoost基本原理

XGBoost的实现,我觉得主要还是在于对GBDT的改良上。对于GBDT还是不太熟悉的朋友,请看我这一篇文章《GBDT》。我个人认为这两者区别主要还是在于细节上,理解了GBDT我认为就差不多等于理解了XGBoost。 我重点比较一下XGBoost与GBDT两种算法的不同: XGBoost的...

2018-08-14 21:44:27

阅读数 980

评论数 0

GBDT(Gradient Boosting Decision Tree)基本原理

GBDT相对于经典的决策树,算是一种比较成熟而且可以实际应用的决策树算法了。我们想要理解GBDT这种决策树,得先从感性上理解这棵树的工作方式。 首先我们要了解到,DBDT是一种回归树(Regression Decision tree)。回归树与分类树的差距请看我的文章《经典的回归树算法》。 我们知...

2018-08-14 21:41:15

阅读数 483

评论数 0

python基础pandas得drop()用法

  转载:https://blog.csdn.net/legalhighhigh/article/details/80546422 做数据处理得时候用到了pandas,体验不错,记录如下: import pandas as pd import numpy as np   直接可以用pan...

2018-08-14 18:12:58

阅读数 1022

评论数 0

PANDAS 数据合并与重塑(concat篇)

转载:https://blog.csdn.net/stevenkwong/article/details/52528616 pandas作者Wes McKinney 在【PYTHON FOR DATA ANALYSIS】中对pandas的方方面面都有了一个权威简明的入门级的介绍,但在实际使用过程...

2018-08-14 16:19:10

阅读数 70

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭