【例】汉诺塔问题
//把n个盘从a通过b移动到c(移动后得到正确的上下顺序)
publish static void hanoi(int n, int a, int b, int c)
{
if(n > 0)
{
hanoi(n-1, a, c, b);
move(a, c);
hanoi(n-1, b, a, c);
}
}
递归->非递归的解决方法
在递归算法中消除递归调用,使其转化为非递归算法
- 用户定义栈
- 递推
- Cooper变换
分治法的基本步骤
分治法的伪代码:
divide-and-conquer(p)
{
if(|p| <= n0)
adhoc(p); //解决小规模的问题
divide p into smaller subinstance p1, p2, ... , pk; //分解问题
for(i = 1; i <= k; i++)
yi = divide-and-conquer(pi); //递归的解各子问题
return merge(y1, ... , yk); //将各子问题的解合并成原问题的解
}
【例】棋盘覆盖 2k ✖ 2 k
×取不含特殊方格的区域的顶角
#include<stdio.h>
#define N 4
int board[N][N];
int tile = 1;
void chessBoard(int tr, int tc, int dr, int dc, int size)
{
if (size == 1)
return;
int t = tile++; //L型骨牌号
int s = size/2; //分割棋盘
//左上
if (dr < tr + s && dc < tc + s) //特殊方格在此棋盘中
chessBoard(tr, tc, dr, dc, s);
else //此棋盘中无特殊方格
{
board[tr + s - 1][tc + s - 1] = t; //用t号L型骨牌覆盖右下角
chessBoard(tr, tc, tr + s - 1, tc + s - 1, s); //迭代覆盖其余方格
}
//右上
if (dr < tr + s && dc >= tc + s)
chessBoard(tr, tc + s, dr, dc, s);
else
{
board[tr + s - 1][tc + s] = t;
chessBoard(tr, tc + s, tr + s - 1, tc + s, s);
}
//左下
if (dr >= tr + s && dc < tc + s)
chessBoard(tr + s, tc, dr, dc, s);
else
{
board[tr + s][tc + s - 1] = t;
chessBoard(tr + s, tc, tr + s, tc + s - 1, s);
}
//右下
if (dr >= tr + s && dc >= tc + s)
chessBoard(tr + s, tc + s, dr, dc, s);
else
{
board[tr + s][tc + s] = t;
chessBoard(tr + s, tc + s, tr + s, tc + s, s);
}
}
int main()
{
chessBoard(0, 0, 0, 1, N);
for (int i = 0; i < N; i++)
{
printf("\n");
for (int j = 0; j < N; j++)
{
printf("%5d", board[i][j]);
}
}
return 0;
}