整体图示及论文链接:
论文链接:https://arxiv.org/pdf/2009.06825.pdf
个人总结:
本文提出了一种基于数据的非模型算法
依据:数据获取技术的成熟,数据测试量的增大
优势:相对于基于模型的算法 ,对于模型错配有很强的健壮性
评判电网是否故障的三个标准:
1.信号峰值(时域上)
预处理:
(1)高通滤波
(2)提取区域最大值
(3)区域最大值排序,只保留大小相差较大数据的较大值(作为一个峰值保存下来)
统计一个信号的峰值,峰值大于200,大概率异常信号
2.频域分类
基于DFT系数分类,但DFT矩阵计算量过大,需要减少数量级
预处理:
给DFT矩阵每一行计算MI值,只使用MI值最高的那几行(总数的1%)
计算好的DFT系数,作为CNN的输入,进行特征提取,给该信号一个为异常信号的权重
3.时域分类器
将原始数据分为m块,每块长度为