阅读论文:电网的故障检测

本文提出了一种结合时域和频域特征的新型非模型算法,用于电网故障检测。通过高通滤波、峰值提取等预处理,利用LSTM和CNN进行异常信号的特征提取和权重分配。此外,提出基于频率的分类算法,采用多任务学习提高分类器性能,有效应对高维时间序列数据的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整体图示及论文链接:

论文链接:https://arxiv.org/pdf/2009.06825.pdf

 

个人总结:

本文提出了一种基于数据的非模型算法

  依据:数据获取技术的成熟,数据测试量的增大

  优势:相对于基于模型的算法 ,对于模型错配有很强的健壮性

评判电网是否故障的三个标准:

1.信号峰值(时域上)

  预处理:

    (1)高通滤波

    (2)提取区域最大值

    (3)区域最大值排序,只保留大小相差较大数据的较大值(作为一个峰值保存下来)

  统计一个信号的峰值,峰值大于200,大概率异常信号

2.频域分类

  基于DFT系数分类,但DFT矩阵计算量过大,需要减少数量级

  预处理:

  给DFT矩阵每一行计算MI值,只使用MI值最高的那几行(总数的1%)

  计算好的DFT系数,作为CNN的输入,进行特征提取,给该信号一个为异常信号的权重

3.时域分类器

  将原始数据分为m块,每块长度为

python+opencv简谱识别音频生成系统源码含GUI界面+详细运行教程+数据 一、项目简介 提取简谱中的音乐信息,依据识别到的信息生成midi文件。 Extract music information from musical scores and generate a midi file according to it. 二、项目运行环境 python=3.11.1 第三方库依赖 opencv-python=4.7.0.68 numpy=1.24.1 可以使用命令 pip install -r requirements.txt 来安装所需的第三方库。 三、项目运行步骤 3.1 命令行运行 运行main.py。 输入简谱路径:支持图片或文件夹,相对路径或绝对路径都可以。 输入简谱主音:它通常在第一页的左上角“1=”之后。 输入简谱速度:即每分钟拍数,同在左上角。 选择是否输出程序中间提示信息:请输入Y或N(不区分大小写,下同)。 选择匹配精度:请输入L或M或H,对应低/中/高精度,一般而言输入L即可。 选择使用的线程数:一般CPU核数相同即可。虽然python的线程不是真正的多线程,但仍能起到加速作用。 估算字符上下间距:这简谱中符号的密集程度有关,一般来说纵向符号越稀疏,这个值需要设置得越大,范围通常在1.0-2.5。 二值化算法:使用全局阈值则跳过该选项即可,或者也可输入OTSU、采用大津二值化算法。 设置全局阈值:如果上面选择全局阈值则需要手动设置全局阈值,对于.\test.txt中所提样例,使用全局阈值并在后面设置为160即可。 手动调整中间结果:若输入Y/y,则在识别简谱后会暂停代码,并生成一份txt文件,在其中展示识别结果,此时用户可以通过修改这份txt文件来更正识别结果。 如果选择文件夹的话,还可以选择所选文件夹中不需要识别的文件以排除干扰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值