Feature Pyramid Networks for Object Detection

特征金字塔网络(Feature Pyramid Networks, FPN)为了解决目标检测中的多尺度问题而提出。传统方法如Faster R-CNN仅利用最后一层特征,导致小目标检测效果不佳。FPN通过构建金字塔结构,结合不同层级的特征,既利用了浅层的定位信息,也利用了深层的语义信息,提高了小目标检测的准确性。FPN在RPN和Fast R-CNN中均有应用,通过在不同尺度的特征层上预测,显著提升了检测精度。" 52137418,5562075,C++ STL顺序容器性能分析与选择指南,"['C++', 'STL', '容器']
摘要由CSDN通过智能技术生成

出现背景:

       在以往的faster rcnn进行目标检测时,无论是rpn还是fast rcnn,roi 都作用在最后一层,这在大目标的检测没有问题,但是对于小目标的检测就有些问题。因为对于小目标来说,当进行卷积池化到最后一层,实际上语义信息已经没有了,因为我们都知道对于一个roi映射到某个feature map的方法就是将底层坐标直接除以stride,显然越后,映射过去后就越小,甚至可能就没有了。 所以为了解决多尺度检测的问题,引入了特征金字塔网络。

特征金字塔:

     上图就是一个传统的图像金字塔,针对一个输入图像,resize成多个scale,针对每个scale,都输入网络训练,预测,这样,网络能够针对不同的scale的图像进行预测,但是问题严重,计算开销太大。关于特征金字塔,作者举例了传统的3类和自己提出的金字塔,如下图所示:

图b即对原始图像进行多次卷积池化的操作,仅采用网络的最后一层的特征图做预测。SPPnet、Fast R-CNN和Faster R-CNN都是采用的这种方法。这种方法速度快,内存占用较少;缺点在于仅关注了深层网络的最后一层的特征,却忽略了其他层的特征,尤其是浅层的特征没有充分利用。

图c即在原始图像上进行深度卷积,结合不同层的特征做多尺度融合的预测。SSD、DSSD等就是用的这种方式。这种方法的优点是对于有些目标来说,不需要进行多余的前向传播操作,因为简单的目标仅需要较浅层的特征就可以检测,复杂的目标用较深层的特征去检测。这样在一定程度上加速了网络的传播,不增加额外的计算量。缺点是获得的特征不鲁棒,对于小目标检测效果不好(比如SSD没有利用比Conv4_3更浅的层的特征,而这些浅层的特征图有着交大的分辨率,对小目标的检测很重要)。

图d就是作者提出的模型,虽然图c中的模型可以解决相关的问题,但是抛弃了高维度的特征,例如,在图像的细节预测上,一些微小的物体只有在高层次的卷积层才可以识别,在低维的卷积层是无法识别的,那么对图c的模型而言,很显然,在低层次的预测结果是很差的,因为此时没有考虑高维的图像特征,但是图d的模型解决了这个问题,将高维特征进行逐步下采样,与相应卷积层的特征图相加即可。既能结合高维的特征,又能在较小的计算开销下产生multi-scale的输出。

具体过程如下:

       训练分两个过程,左边是bottom -up,右边是up- bottom。首先bottom- up,逐步卷积,完成卷积后,就是up -bottom。具体操作:上图中A相对B是高层,B相对A是浅层。将A特征图上采样(最近邻上采样,2倍),B特征图用1*1卷积核卷积,目的是使B层的特征图的channels与A层的特征图channels相同。然后A、B层特征图对应channels元素点和(注意此时A、B的特征图的resolution应相同),成为C。C后面再接一个3*3的卷积,目的是消除“上采样的混叠效应”。

具体结构如图:

注:Bottom-up pathway。即网络的前向传播过程。在前向传播过程中,feature map的大小在经过某些层后会改变,而经过其他一些层时不会改变,作者将不改变feature map大小的层归为一个stage,每次抽取的特征都是在每个stage的最后一层的输出。具体地,以Resnet-101为例,作者使用每个阶段最后一个残差结构的特征作为输出,用{C2、C3、C4、C5}表示,对应Conv2_x、Conv3_x、Conv4_x、Conv5_x的最后一个输出,他们对于输入图像具有4、8、16、32像素的步长。Resnet-101结构如下图:

C2、C3、C4、C5在“Top-down pathway”和“lateral connections”之后对应 P2、P3、P4、P5。

应用:

(1)用在RPN,可以提取多个维度的feature map的anchor,增加了feature的表达。

(2)用在Fast R-CNN,就是将ROI打在不同scale的Pyramid level上,最后统一roi-pooling到特定的scale,做CNN classification。 并且给出了经验值挑选方式:

Faster R-CNN是对Conv4_3后的特征图用RPN扫描,而这里是对不同的P都用RPN扫描一遍,即原来Faster R-CNN仅有一次RPN操作,这里有5次RPN操作。每个FPN后的RPN都对应一个尺度的Anchor。P2、P3、P4、P5、P6分别对应Anchors的尺寸为32*32、64*64、128*128、256*256、512*512。每个anchor又对应三种不同的aspect ratio:1:2、1:1、2:1。因此FPN后的Faster R-CNN有15种不同的anchor。关于anchor的整幅样本标定与Faster R-CNN中相同,不同的是Faster R-CNN中关于跨边界的anchor是舍弃的,这里作者并没有舍弃这些anchor。简化为如下:

论文的关键点: 引入Pyramid,同时保证整个Network的计算增量尽可能小。增强feature representation。浅层特征对定位效果好,深层特征由于语义更高级,对分类结果好。通过对深层和浅层特征的融合,使定位信息和分类信息相结合,构建一个更深的特征金字塔,融合了多层特征信息,并在不同的特征层上预测,大大提高了识别准确率(AP)。算法同时利用低层特征高分辨率和高层特征的高语义信息,通过融合这些不同层的特征达到预测的效果。并且预测是在每个融合后的特征层上单独进行的。

注:echoes指的是把训练数据训练几轮的轮数。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 特征金字塔网络(Feature Pyramid Networks, FPN)是一种用于目标检测的神经网络架构。它通过在深层特征图上构建金字塔结构来提高空间分辨率,从而更好地检测小目标。FPN具有高效的多尺度特征表示和鲁棒性,在COCO数据集上取得了很好的表现。 ### 回答2: 特征金字塔网络(Feature Pyramid Networks,简称FPN)是一种用于目标检测的深度学习模型。该模型是由FAIR(Facebook AI Research)在2017年提出的,旨在解决单一尺度特征不能有效检测不同大小目标的问题。 传统的目标检测算法通常采用的是滑动窗口法,即在图像上以不同大小和不同位置进行滑动窗口的检测。但是,这种方法对于不同大小的目标可能需要不同的特征区域来进行检测,而使用单一尺度特征可能会导致对小目标的错误检测或漏检。FPN通过利用图像金字塔和多层特征提取,将不同尺度的特征合并起来,从而达到对不同大小目标的有效检测。 FPN主要分为两个部分:上采样路径(Top-Down Pathway)和下采样路径(Bottom-Up Pathway)。下采样路径主要是通过不同层级的卷积神经网络(CNN)来提取特征,每层都采用了非极大值抑制(Non-Maximum Suppression,NMS)方法来选择最具有代表性的特征。上采样路径则主要是将低层特征进行上采样操作,使其与高层特征的尺寸对齐,并与高层特征相加,实现特征融合。 FPN在目标检测中的优势体现在以下几个方面。首先,FPN可以提高模型对小目标的检测能力,同时仍保持对大目标的检测准确度。其次,FPN的特征金字塔结构可以在一次前向传递中完成目标检测,减少了计算时间。最后,FPN对于输入图像的尺寸和分辨率不敏感,可以在不同分辨率的图像上进行目标检测,从而适应多种应用场景。 总之,FPN是一种在目标检测领域中得到广泛应用的模型,其特征金字塔结构能够有效地解决单一尺度特征不足以检测不同大小目标的问题,并在检测准确率和计算效率方面取得了不错的表现。 ### 回答3: 特征金字塔网络是一种用于目标检测的深度学习模型,主要解决的问题是在不同尺度下检测不同大小的物体。在传统的卷积神经网络中,网络的特征图大小会不断减小,因此只能检测较小的物体,对于较大的物体则无法很好地检测。而特征金字塔网络则通过在底部特征图的基础上构建一个金字塔状的上采样结构,使得网络能够在不同尺度下检测不同大小的物体。 具体来说,特征金字塔网络由两个主要部分构成:共享特征提取器和金字塔结构。共享特征提取器是一个常规的卷积神经网络,用于提取输入图像的特征。而金字塔结构包括多个尺度的特征图,通过上采样和融合来获得不同尺度的特征表示。这些特征图之后被输入到后续的目标检测网络中,可以通过这些特征图来检测不同尺度的物体。 特征金字塔网络可以有效地解决目标检测任务中的尺度问题,并且在许多实际应用中表现出了优异的性能。例如,通过使用特征金字塔网络,在COCO数据集上得到的目标检测结果明显优于现有的一些目标检测算法。 总之,特征金字塔网络是一种非常有效的深度学习模型,可以处理目标检测任务中的尺度问题,提高模型在不同大小物体的检测精度。它在实际应用中具有很高的价值和应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值