pandas中简单统计分组聚合函数的介绍

本文简要介绍了Pandas在Python中的数据处理功能,包括数据导入、查看基本信息、统计出现次数、排序、cut函数的使用,以及核心的分组和聚合操作。详细讲解了groupby和apply函数的应用,展示如何在数据分析中进行有效的数据分组和计算。
摘要由CSDN通过智能技术生成

说明: 这里只是简单的说明了一些pandas中的一些我在毕设中使用到的函数,这个 模块的并未具体其他的一些功能并未详细的进行说明。

pandas 简单介绍

Python语言的Pandas模块是一种高效结构化数据分析工具,它在NumPy的基础上提供了DataFrame数据结构,并以此为核心提供了大量的数据的输入输出、清洗、处理和分析等一些函数

pandas 相当于 python 中 excel:它使用表(也就是 dataframe),能在数据上做各种变换,但还有其他很多功能。

pandas的引入

# as 作用是为了这个模块指定别名方便使用
import pandas as pd 

python pandas 中如何禁用科学计数法显示

pd.set_option('display.float_format',lambda x : '%.2f' % x)

pandas 导入数据

读取CSV文件中的内容:

df = pandas.read_csv(filepath_or_buffer, sep =',', usecols,names )

参数的含义

  • filepath_or_buffer:文件路径
  • sep :分隔符,默认用","隔开
  • usecols:指定读取的列名,列表形式
  • names: 指定列名
    读取 Excel 中的 数据
pd.read_excel(file, sheet_name)
  • sheet_name参数允许指定单张表格或多张表格被读取。
  • sheet_name的默认值是0,这表明读取的是第一张表格。
    注: 这直说了如何导入CSV文件和Excel中的数据,其他类型的可以参考pandas中文网的io工具进行学习

保存数据
注意:index=None :表示的是去除列索引
如果你想追加文件的话:加上参数 mode=‘a’
如:

df1.to_csv('Result1.csv',index=None,mode='a') 

pandas中的一些方法

查看数据的基本信息

# 会展示data数据中是列中是数字类型的统计情况,data后面可以指定列名,查看某一列的信息data[列名]
data.describe()

该方法会显示出数据的总数,平均数,中位数,25%分为数等信息
下图为在 jupyte notebook 中使用该方法返回的示例:

describe方法返回数据示例
查看数据的整体情况,可以查看出数据的每一列的确实情况和数据类型

data.info()

示例图如下:
info函数返回值示例

统计出现的次数

df[ column_1 ].value_counts()
  • value_counts() 统计该列中每一项出现的次数
  • value_counts() 后面可以进行切片,进行选择输出
    value_counts()实例
    上面的内容 可以使用for循环将处理后的数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值