进击的菜鸟

每天进步一点点

有序序列的二分查找、冒泡排序、归并排序算法实战解析

本节开始讲解一下几个简单的算法,原理都在那本书上,大家自己看吧,我就不做搬运工了,这里不同的是,我把vector接口函数单独拿出来进行测试了,深深的体会到算法的奥妙之处,等你深入理解了你会情不自禁拍案叫绝的,废话不多说,因为这都是前段时间自己的练习代码,有详细的注释,不理解的请好好思考和看书,这里...

2019-03-11 14:43:12

阅读数 87

评论数 0

数据结构+算法+c++学习(写在前面)

本篇开始将开始更新算法方面的博客,其实应该是数据结构更多一些,我不知道大家是如何学习算法和数据结构的,就我目前的学习情况,简单的和大家说一下感受。本人研一时学校开设了算法这门课程,当时上这门课时也很用心的学习了,但是那时候的学习更多的是理解各个算法的原理,不懂数据结构方面的知识,更不会自己写算法,...

2019-03-07 10:09:00

阅读数 150

评论数 9

2018年度总结和2019年度计划

回顾2018 2018这一年基本上按照2017年的预定计划完成了任务,制定的计划基本都完成了,少部分还在继续,期间收获了很多也失去了很多,得失在于自己的权衡,总体来说是收获的较多。2017年7月份开始系统学习AI方面的内容,之前一直在关注这个行业,因为和我的专业很相近,因此开始是从机器学习开始的...

2019-01-06 15:37:40

阅读数 1870

评论数 7

2018年AI和ML(NLP,计算机视觉,强化学习)技术概述和2019年趋势

前面两篇主要介绍了基于深度学习的自然语言处理,这是去年以前的成果,下面这一篇是总结今年NLP的最新成果,大家可以看看,找到对应论文好好研究,当然这还是外国人写的,没办法,国内很少有人能总结的那么透彻,一是因为大多数都是学习者,而不是应用者,所以能全局把控整个AI界的研究动向并写出来的人很少,因此翻...

2019-01-06 14:04:23

阅读数 1082

评论数 0

NLP--- 将改变你未来沟通方式的7种NLP技术(第二部分)

在第一部分中,我介绍了自然语言处理(NLP)领域以及为其提供支持的深度学习运动。我还向您介绍了NLP中的3个关键概念:文本嵌入(字符串的矢量表示),机器翻译(使用神经网络翻译语言),以及对话和对话(可以实时与人进行对话的技术)。在第2部分中,我将介绍另外4项重要的NLP技术,您应该注意这些技术,以...

2019-01-05 14:38:41

阅读数 278

评论数 0

NLP---将改变您在未来的沟通方式的7种 nlp 技术 (第一部分(附原始论文))

前面的那么多NLP算法大多数都是传统的自然语言处理的算法思想,还没和深度学习神经网络结合起来,本想打算开始更新一些基于深度学习的NLP处理方面的,在浏览国外博客时发现了一篇很好的文章,因此这里翻译一下,发到这里,大家先看看NLP是如何和深度学习结合在一起的,然后针对几个方向继续学习,后面也会简单介...

2019-01-05 13:30:24

阅读数 302

评论数 0

Word2Vec算法详解(CBOW和skip-gram算法详解)

这里发现了一篇很好的教程,因此就不写了,大家直接下载看就可以了,自己也偷偷懒,这篇文章对word2vec算法思想讲解的很透彻,很浅显易懂,这里对此表示感谢,当然你的英文比较好的情况下,可以直接看英文原文,这里大家百度即可,下面我上传这篇很好的中文详解的pdf文件:https://pan.baidu...

2019-01-04 13:51:41

阅读数 142

评论数 0

Word2Vec算法详解(相关背景介绍)

本节开始将介绍几种比较前言的NLP算法,主要是和神经网络进行结合的,和深度学习进行结合的算法原理和思想,前面的NLP算法都是传统的经典NLP算法思想,都没有涉及到实战方面的,实战方面的我计划明年开始进行,所以这个系列的都是理论,本人一直很注重理论方面的学习,因为只有搞懂算法的原理你才有可能去改进去...

2019-01-04 13:51:12

阅读数 179

评论数 0

NLP ---文本情感分析

前面几节我们详细的研究了文本分析的相关算法,本节将简单介绍一下基于文本的情感分析方面的内容,本节更多是论述方面的内容,这个方向的算法基本都是我们前面学过的,原理就不详细的讲解了,如果有感兴趣的朋友可以自行查阅资料进行研究,这里就不在详细的讲解了,以后如果工作中遇到相关的在详细的研究一下,下面正式开...

2019-01-03 10:34:46

阅读数 1080

评论数 1

NLP ---句法分析

句法分析是在计算机系统的基础上进行发展的,常见的句法分析应用有: 计算机的翻译、文字的注释、一对一的问答系统、信息的自然摘录以及自动搜索等。如果对句法分析这一词不了解,那么一定知道文法分析,这是该定义不同的两个说法。句法分析说白了就是在一定规则的语法中,进行句子以及句法单位的自动识别,并按照规定输...

2019-01-03 10:33:05

阅读数 246

评论数 0

NLP --- 词性标注

上前几节我们简单介绍了命名体识别的算法,其实主要的方法就是HMM和CRF了,因为可以转换为标注问题,这里都可以使用HMM和CRF,本节我们将介绍另外一个重要的知识点即词性标注,同样的在宗老师的书里都有详细的讲解,这里就简单的讲解一下,那么我们下面就开始: Part-of-speech,是重要的基...

2019-01-02 11:07:24

阅读数 341

评论数 0

NLP --- 文本分类(基于LDA的隐语意分析训练算法详解)

上一节详细介绍了什么是LDA,详细讲解了他的原理,大家应该好好理解,如果不理解,这一节就别看了,你是看不懂的,这里我在简单的叙述LDA的算法思想: 首先我们只拥有很多篇文本和一个词典,那么我们就可以在此基础上建立基于基于文本和词向量联合概率(也可以理解为基于文本和词向量的矩阵,大家暂且这样理解)...

2019-01-01 13:35:31

阅读数 293

评论数 0

NLP --- 文本分类(基于LDA的隐语意分析详解)

前几节我们分析了向量空间模型(VSM)、基于奇异值分解(SVD)的潜语意分析(LSA)、基于概率的潜语意分析(PLSA)这些模型都是为了解决文本分类问题,他们各自有自己的优点和缺点,其中VSM模型简单方便但是容易造成维度爆炸和计算量慢的缺点,LSA是基于矩阵分解的原理进行分析的,优点是对VSM有效...

2018-12-31 14:28:38

阅读数 631

评论数 0

NLP --- 文本分类(基于概率的隐语意分析(PLSA)详解)

上一节我们详细的讲解了SVD的隐语意分析,一旦提到这个,大家脑海里应该立刻有如下的矩阵形式: 我们通过矩阵的分解对文本数据进行压缩,压缩量很可观,尤其是原始的矩阵的维度很高时压缩的更可观,因为k通常要远远小于n。如上图等号左边的矩阵其实就是我们的文本的词向量组成的,我们知道一篇文章的词是很多...

2018-12-30 12:48:49

阅读数 518

评论数 2

NLP --- 文本分类(基于SVD的隐语意分析(LSA))

上一节我们详细的讲解了基于VSM的文本分类,这种分类在很早就出现了,虽然是文本分类中有效的分类手段,但是因为建立的向量是很多维的,因此容造成维度灾难,同时VSM的没有能力处理一词多义和一义多词问题,例如同义词也分别被表示成独立的一维,计算向量的余弦相似度时会低估用户期望的相似度;而某个词项有多个词...

2018-12-29 13:06:16

阅读数 584

评论数 0

NLP --- 文本分类(向量空间模型(Vector Space Model)VSM)

本节主要介绍文本分类中的一种算法即向量空间模型,这个算法很经典,包含文本预处理、特征选择、特征权值计算、分类算法、这是VSM的几个主要步骤,在宗老师的书里都有详细的讲解,这里也会进行深入的讲解,浅显易懂的是目的,深入理解是目标,下面给出这个VSM模型的方框流程图: 其中分词和词袋的建立我们在...

2018-12-28 10:33:10

阅读数 1230

评论数 0

NLP --- 命名体识别(NER)

本节将讲解命名体识别,有些核心的算法如HMM、CRF等我们前面都讲过了,所以本节更像是综述性的文章,大家可以看看宗老师的书,那里说的比较详细,这里只是简单的介绍一下命名实体识别(named entity recognition,NER)的发展历史,和当前的研究程度,大家如果对其有兴趣,请查阅相关资...

2018-12-27 12:25:18

阅读数 434

评论数 0

NLP ---分词详解(常见的五种分词技术二)

上一篇我们讲了N一最短路径方法、基于词的n元文法模型,本节将主要介绍由字构词方法、基于词感知机算法的汉语分词方法、基于字的生成模型和区分式模型相结合的汉语分词方法,下面我们就开始讲解由字构词的方法: 由字构词方法 由字构词方法的由来 其实这个方法我们在前面讲解HMM和CRF时就一直在不停的在...

2018-12-26 10:24:20

阅读数 293

评论数 0

NLP ---分词详解(常见的五种分词技术一)

上一节我们简单的介绍了分词的起源,本节将介绍五种分词效果比较好的分词方法,他们都是基于统计的,分别为:N最短路径法、基于词的n元语法模型的分词方法、由字够词的汉语分词方法、基于词感知机算法的汉语分词方法、基于字的生成模型和区分式模型相结合的汉语分词方法。下面我们就一一的介绍他们: N最短路径法 ...

2018-12-25 11:28:43

阅读数 790

评论数 0

NLP --- 分词详解(分词的历史)

前面的内容我们以算法为主,主要讲解了HMM和CRF算法,为了解决HMM的问题,使用了EM算法,但是整个HMM算法是产生式模型的,计算量大和复杂,因此为了解决这个问题,我们引入了CRF算法,该算法是借鉴了最大熵模型的算法,然后在HMM的基础上加入了概率图模型和团的概念,使的最后模型称为判别式模型了,...

2018-12-24 15:10:36

阅读数 241

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭