Tensorflow是一个采用数据流图,用于数值计算的开源软件库。节点时在图中表示数学操作,途中的线则表示在节点间相互联系的多维数据数组,即张量。它灵活的架构让你可以在多种平台上开展计算,台式计算机、CPU、服务器、移动设备等。一旦输入端的所有张量准备好,节点将被分配到各种计算设备完成异步并行计算。
常见的框架对比:
(1)caffe:卷积神经网络框架,专注于卷积神经网络和图像处理,是用C++语言写成的,执行速度非常快。
(2)chainer:一个强大、灵活、直观的机器学习python软件库,能够在一台机器上利用多个GPU进行运行,并且在运行中进行动态定义,而不是启动时定义,这也是该框架的一大亮点。
(3)CNTK:是微软研究人员开发的用于深度神经网络和多个GPU加速技术的完整开源工具包。微软成CNTK在语音和图像识别方面,比谷歌的Tensorflow具有更强优势。
(4)Deeplearning4J:专注于神经网络的java库,可以扩展并集成Spark、Hadoop和其他基于java的分布式集成软件。
(5)Nervana Neo:是一个高效的pyhthon机器学习库,它能够在单个机器上使用多个模型相当容易,因此在研究中极其流行。
(6)Torch:是一个专注于GPU实现的机器学习库,得到了像Facebook、谷歌、Twitter这样的大公司的研究团队的支持。
安装方式:
(1)先安装Anaconda,适用于python2.7的版本
(2)安装后重启。
(3)建立Tensorflow的运行环境,并将其激活、执行命令:conda create -n tensorflow python=2.7;source active tensorflow这样就激活了虚拟环境。
(4)执行以下代码进行Tensorflow的安装pip install tensorflow.python;import tensorflow as tf;hello=tf.constant('hello,tensorflow');sess=tf.Session();print(sess.run(hello));a=tf.constant(10);b=tf.constant(32);print(sess.run(a+b));