Tensorflow框架特性与安装

    Tensorflow是一个采用数据流图,用于数值计算的开源软件库。节点时在图中表示数学操作,途中的线则表示在节点间相互联系的多维数据数组,即张量。它灵活的架构让你可以在多种平台上开展计算,台式计算机、CPU、服务器、移动设备等。一旦输入端的所有张量准备好,节点将被分配到各种计算设备完成异步并行计算。

       常见的框架对比:

     (1)caffe:卷积神经网络框架,专注于卷积神经网络和图像处理,是用C++语言写成的,执行速度非常快。

    (2)chainer:一个强大、灵活、直观的机器学习python软件库,能够在一台机器上利用多个GPU进行运行,并且在运行中进行动态定义,而不是启动时定义,这也是该框架的一大亮点。

    (3)CNTK:是微软研究人员开发的用于深度神经网络和多个GPU加速技术的完整开源工具包。微软成CNTK在语音和图像识别方面,比谷歌的Tensorflow具有更强优势。

   (4)Deeplearning4J:专注于神经网络的java库,可以扩展并集成Spark、Hadoop和其他基于java的分布式集成软件。

   (5)Nervana Neo:是一个高效的pyhthon机器学习库,它能够在单个机器上使用多个模型相当容易,因此在研究中极其流行。

   (6)Torch:是一个专注于GPU实现的机器学习库,得到了像Facebook、谷歌、Twitter这样的大公司的研究团队的支持。

   安装方式:

    (1)先安装Anaconda,适用于python2.7的版本

    (2)安装后重启。

    (3)建立Tensorflow的运行环境,并将其激活、执行命令:conda create -n tensorflow python=2.7;source active tensorflow这样就激活了虚拟环境。

(4)执行以下代码进行Tensorflow的安装pip install tensorflow.python;import tensorflow as tf;hello=tf.constant('hello,tensorflow');sess=tf.Session();print(sess.run(hello));a=tf.constant(10);b=tf.constant(32);print(sess.run(a+b));

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值