自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(24)
  • 收藏
  • 关注

原创 Vue路由管理

Vue Router 是 Vue.js 官方的路由管理库,用于在单页应用 (SPA) 中实现多视图的导航和管理。路由是什么?路由是用户访问不同 URL 时,应用程序如何处理和响应的机制。在 Vue.js 中,路由管理页面或组件之间的导航。Vue Router 的作用在单页应用中,根据 URL 的变化动态加载不同的组件。使应用支持前进、后退、刷新等浏览器导航功能。提供简单的配置和强大的功能,如嵌套路由、路由守卫、动态路由等。路由模式Hash 模式 (URL 中会包含符号。

2024-11-20 00:16:50 1940 10

原创 【论文阅读-10】Retinanet(Focal Loss)

one-stage结构在精确度上落后于two-stage的结构,但是one-stage结构的训练速度优于two-stage;ResNet 架构之上构建 FPN,构建了一个 P3 到 P7 级别的金字塔,所有金字塔级别都有 C = 256 个通道;将ResNet与FPN相结合,克服了一阶段网络结构精确度较低的问题,但是上采样过程采用的是邻近插值算法,会带来噪声;精度落后的原因是类不平衡问题,也就是前景背景之间的问题;目标所占比例远小于背景所占比例,正负样本不均衡,负样本过多;

2024-11-19 21:44:17 429 1

原创 知识蒸馏(RegNet)

设置随机因子# 训练函数Best_ACC=0# 验证过程return acc# 创建保存模型的文件夹else:# 设置全局参数SEED=42# 设置随机因子# 定义训练过程Best_ACC=0# 验证过程return acc# 创建保存模型的文件夹else:# 设置全局参数SEED=42# 设置随机因子# 定义训练过程Best_ACC=0# 验证过程return acc# 创建保存模型的文件夹else:# 设置全局参数SEED=42。

2023-02-11 18:32:43 127

原创 Vision Transformer

Transformer 中最重要的结构就是 Multi-head Attention,即多头注意力。Multi-Layer Perceptron(MLP),即多层感知机,一个经典的人工神经网络的结构。Multi-head:将模型分为多个头,形成多个子空间,可以让模型去关注不同方面的信息。Image Patch Embedding,即图像分块嵌入。主要作用是将输入图像切分为块并进行线性变换嵌入向量空间中。基础模块构建完成之后就可以搭建完整的模型了。

2022-12-10 15:41:28 94

原创 Transform In Transformer

复现TNT整体上来说没那么多复杂的设计,但是其Conv+滑窗、position encoder、two-level的设计思想却有一定的吸收难度。通过two-level,对全局特征和局部特征进行融合,改善以前的transformer在视觉上的不足。利用position encoder巩固图像的空间结构。1.in_num_head 尽量不动;2.改embeding_size可以按照64的倍数增加;3.改动size,dim等参数均要被2整除才可保证模型运行。

2022-12-10 11:06:22 191

原创 1*1卷积降维

其中n为输入图像的维度,p为padding,f为卷积核的个数,s为卷积跨度。假设原始输入图像size:6x6x32;1个1*1卷积的size:1x1x32。最后输出图像size:6x6x1。

2022-10-11 15:16:36 190

原创 【论文阅读-19】GreenMiM

1.使用分层视觉转换器 (ViT) 进行mask图像建模 (MIM)①对于窗口注意力,我们按照分治策略设计了一个group窗口注意力方案。为了减轻 self-attention 的二次复杂度。patch的数量,组注意鼓励统一分区,可以将任意大小的每个局部窗口内的可见patch分组为相同大小,然后在每个组中执行掩码自注意。②通过动态规划算法进一步改进了分组策略,以最小化分组块上注意力的总体计算成本。因此,MIM 现在可以以green高效的方式处理分层 ViT。

2022-09-23 20:55:22 99 1

原创 【论文阅读-18】MAE

mask自编码器 (MAE) 是用于计算机视觉的可扩展自监督学习器。MAE:mask输入图像的随机patch并重建丢失的像素。①非对称的编码器-解码器架构,其中一个编码器只对可见的patch子集(没有masktoken)进行操作,以及一个轻量级解码器,它从潜在表示和masktoken重建原始图像。②mask输入图像的高比例,例如 75%,会产生一个重要且有意义的自我监督任务。

2022-09-22 21:03:01 177 1

原创 【论文阅读-17】 Transformer文献综述

具体来说,不同的head使用不同的query、key和value矩阵,这些矩阵由于随机初始化,可以将训练后的输入向量投影到不同的表示子空间中。具体来说,剪枝侧重于减少Transformer模型中的组件(例如,层、头)的数量,而分解表示具有多个小矩阵的原始矩阵。应用BETR中所提出的[class] embedding,它会与各个输入交互信息,在最后的阶段,可以以[class] 为依据进行分类,此外,将一维位置embedding添加到patchembedding中以保留位置信息。

2022-09-16 14:40:29 987 1

原创 【论文阅读-16】DeiT

1.需要大规模与训练数据集是ViT受限的原因之一。本文工作通过在 Imagenet 上进行训练无卷积Transformer。2.引入了teacher-student策略,依赖于一个蒸馏token,确保学生通过注意力从老师那里学习。

2022-09-13 11:04:59 101 1

原创 【论文阅读-15】TransReID

挑战:提取鲁棒的特征表示。问题:基于卷积神经网络 (CNN) 的方法取得了巨大成功,但它们一次只处理一个局部邻域,并且会遭受由卷积和下采样算子(例如池化和跨步卷积)引起的细节信息丢失。解决:TransReID细节:1.首先将图像编码为一系列patch,并构建一个pure transformer-based,并进行一些关键改进。

2022-09-12 16:20:36 209 1

原创 【论文阅读-14】 ViT

Vision Transformer (ViT)在大规模数据集上做预训练,迁移到中小型数据集上可以获得与最好的神经网络相媲美的结果。

2022-09-09 15:23:27 101 1

原创 【论文阅读-13】Swin Transformer

1.Swin Transformer,能够作为计算机视觉的通用主干。2.为了解决从NLP到CV规模及分辨率变化的问题,提出了分层Transformer(Hierarchical Vision),它的计算是通过移动窗口(shifted windows)完成的。3.移动窗口:将 self-attention 计算限制在不重叠的当前窗口上,同时还允许跨窗口连接,具有相对于图像大小的线性计算复杂度。

2022-09-07 19:38:33 215 1

原创 【论文阅读-12】Deformable DETR

1.Transformer收敛速度慢且特征空间分辨率有限(小物体);2.DETR注意力只关注周围一小组关键采样点;3.提出了Deformable DETR,改进了DETR在小物体检测上存在的问题;

2022-09-05 21:36:09 268 1

原创 【论文阅读-11】DETR

DETR

2022-09-03 16:32:43 97 1

原创 【论文阅读-9】High-Order Information Mattersti(GCN图卷积)

被遮挡的行人图像与整体图像匹配问题

2022-08-31 09:45:10 87 1

原创 【论文阅读-8】Relation Network for Person Re-identification(GCP,one vs rest)

目前基于全局以及局部信息可以识别出在不同摄像机下的同一人,即使存在遮挡情况也不例外,但是未考虑各个局部信息之间的联系,导致在使用局部信息时,将具有相似属性的不同人误判为同一人;...

2022-08-29 20:22:24 114 1

原创 【论文阅读-7】PSTR: End-to-End One-Step Person Search With Transformers(使用Transformers进行端到端一步人员搜索)

1.提出了一种基于transformer的re-id框架——PSTR。2.PSTR在单个架构中联合执行detection和re-id。3.PSTR包含PSS模块,PSS模块包含detectionencoder-decoder&re-iddecoder。4.re-iddecoder利用共享解码器的多级监督来进行re-idfeature学习,部分注意块来编码人不同部分之间的关系。5.PSTR实现了对象级别的detection和实例级别的re-id。...

2022-08-02 10:30:06 307 1

原创 【论文阅读-6】Harmonious Attention Network for Person Re-Identification(行人再识别的HA网络)

Abstract1.现有的reid方法:①假设行人的bounding box对齐良好;②依赖受限的注意力选择机制来校准不对齐的图像;2.面临的问题:对于任意对齐的行人图像中的reid匹配是次优的,可能具有较大的人体姿态变化和无约束的自动检测误差;3.本文的工作:...

2022-05-24 14:24:25 117 1

原创 【论文阅读-5】Improving Person Re-identification by Attribute and Identity Learning( 通过属性和身份学习来提高ReId)

Abstract1.现状:只考虑了行人的标识标签;2.本文:发现了包含详细的局部描述的属性有助于reid模型学习更有区别的特征表示;3.提出:基于属性标签和ID标签的互补性,提出了一种属性行人重识别(APR)网络;4.APR:一种学习reid嵌入,同时预测行人属性的多任务网络。5.另外:考虑到了属性之间的依赖性和相关性,重新加权了属性预测。1. Introduction1.ReId是一项从非重叠的摄像机中寻找被查询者的任务;属性识别的目标是从图像中预测一组属性的存在;属性描述了一个人的详

2022-05-19 14:12:51 135 1

原创 【论文阅读-4】ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks

Abstract1.通道注意在改善深层卷积神经网络的性能方面提供了巨大的潜能。但是现有的方法都致力于开发更复杂的注意模块,从而增加了计算负担。为了解决性能和复杂度之间的矛盾,本文提出了一种轻量级的注意模块——ECA,该模型只需要k(k≤9)个参数。2.回顾SENet的通道注意力模块,实证地表明避免降维和适当的跨通道交互对于学习有效的通道注意是重要的。3.本文提出了两点,分别是: (1)提出了一种无需降维的局部夸通道交互策略,该策略可以通过快速的一维卷积实现。(2)提...

2022-05-06 14:31:13 413 1

原创 【论文阅读-3】CBAM:Convolutional Block Attention Module

Abstract1.提出了卷积块注意模块(CBAM),一种前馈卷积神经网络注意模块.2.给定一个中间特征映射,该模块沿着两个独立的维度顺序推理注意映射(通道和空间),然后将注意映射乘以输入特征映射来进行自适应特征细化。3.CBAM是一个轻量级的通用模块,可以无缝地集成到任何CNN架构中,并且可以与基础CNN一起进行端到端的训练。Introduction1.最近研究网络的三个重要因素:深度,宽度和基数。2....

2022-05-03 21:10:54 418 1

原创 【论文阅读-2】Attention Is All You Need

Abstract主要的序列转导模型是基于CNN或者RNN的,性能最好的模型encoder和decoder之间靠注意力机制连接。 本文提出了一种新的简单的网络架构,是完全基于注意力机制的——Transformer,完全取消了递归和卷积。Introduction目前解决序列建模和传导问题最先进的方法——RNN,特别是LSTM和GRN 循环模型通常是沿着输入和输出序列的符号位置进行计算的,将位置与时间序列对齐,这种固有的顺序性阻碍了并行化。 注意力机制已经成为了序列建模和转导模型的一个组成部分

2022-05-02 15:13:29 76 1

原创 【论文阅读-1】SENet

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、注意力机制二、使用步骤1.引入库2.读入数据总结前言一、注意力机制注意力机制是什么注意力机制模仿人类的内部观察行为,符合人脑和人眼的感知机制。我们在观察事物时,可以非常迅速地判断出该事物的类别(当然,允许判断错误)。我们之所以能够迅速地作出反应,是因为我们将注意力集中在了物体最具辨识度的部分,而不是说将事物从头到尾的看一遍,再得出结论。注意力机制就是这么产生的。那么注意力机制是什么呢?注意力机制通俗来说就是让.

2022-04-29 15:44:46 99 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除