目录
前言:这几年互联网寒冬,时常听到大数据工作者担忧,大数据是开发支持岗位,担心公司业务收缩,先裁大数据岗位;这从侧面说明大数据应用在公司没有体现出该有的价值,大数据应用有哪些价值?为什么没有实现大数据的价值?本文从这两个视角分析。
一、大数据应用价值
最近几年,到处都能听到大数据这个词,比如大数据推荐,大数据分析,大数据挖掘等;仿佛用大数据这个词就能解释很多没有关联的事;但是大数据到底有哪些应用价值,却没有清晰认识。 一些企业和部门怀着对大数据的期盼,引入了大数据技术开发解决应用场景,发现带来的价值不如预期;大数据的核心特性,是对大数据量的处理能力。什么场景需要,处理能力能干什么?
对于很多单位或者企业,会有这样的疑惑。笔身深耕在大数据应用一线,从使用者的角度去总结和分析大数据带来的价值,如果无法分析到尽善尽美,希望大家谅解和补充。
上一章基于企业和大数据应用做了详细分析。大数据企业应用场景分析-CSDN博客
1.1 大数据技术分析
大数据技术就像个新的土地,如何基于新土地优化原有或者构建新东西,大体方向从这两个维度去思考。对于原有技术场景的优化,数据分析、高并发数据处理属于这类;智能推荐、产品/流程优化、异常检测、智能管理、人工智能和机器学习属于第二类,通过大数据技术构建新东西。
1.2 原有技术场景的优化
1.2.1 数据分析优化
在大数据技术出现以前,数据分析通常在OLTP数据库之上,写SQL用数据库自带引擎做数据分析,数据存储瓶颈分表分库解决,计算性能也得不到保障;大数据技术出现以后,对于业务的分析,可以统一通过数仓产出,且可以跨业务关联分析;除此之外,由于大数据本身的处理能力,以前无法做到的,比如通过日志,或者更细节的埋点分析,都可以通过大数据技术做到业务支持。
对于数据分析的应用优化,这里总结出3个点:
- 代替OLTP数据库做业务指标计算
- 解决数据孤岛,跨业务关联分析计算指标
- 对业务系统运行,构建更细粒度的用户行为分析
1.2.2 高并发数据处理
在大数据技术出现以前,对于提高业务性能的需求,基本是通过多线程高并发的方式实现,大数据技术将许多高并发的业务场景,简化成几个配置选项,对于一些数据采集、数据处理、数据分析,多数数据驱动的场景,使用大数据技术,