- 下面是从concatenate((a1, a2, …), axis=0)官方文档粘贴的例子:
>>>a = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5, 6]])
>>> np.concatenate((a, b), axis=0)
array([[1, 2],
[3, 4],
[5, 6]])
我的理解是,axis=0 就是对数据进行 行操作, axis=1 就是对数据进行 列操作,每一列每一列的操作。这样就不用考虑默认的axis=0(axis=1)轴,拼接时按照axis=1(axis=0)方向进行了。挺绕的。
>>> np.concatenate((a, b.T), axis=1)
array([[1, 2, 5],
[3, 4, 6]])
a 数组是2x2的,数组b是1x2的。因此需要对b进行转置。
补充一点:如果对一维数组进行操作
>>> a = np.array([1,2,3,4])
>>> b = np.array([1,2,3,4])
>>> np.concatenate((a,b),axis=0)
array([1 2 3 1 2 3])