假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
示例 1:
输入: g = [1,2,3], s = [1,1]
输出: 1
解释:
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。
示例 2:
输入: g = [1,2], s = [1,2,3]
输出: 2
解释:
你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.
提示:
1 <= g.length <= 3 * 104
0 <= s.length <= 3 * 104
1 <= g[i], s[j] <= 231 - 1
分析:我们首先需要对饼干的值和孩子的胃口进行排序,然后都从最大的那边开始判断,该题的贪心的策略是,如果当前最大的饼干能满足当前胃口最大的孩子,那么答案就加1,因为这样是浪费最少的饼干,如果把饼干值最大的饼干给胃口最小的孩子,虽然也能满足一个答案,但是这样浪费的饼干值太多(饼干的值-孩子的胃口),因此我们的策略就是每个饼干都尽量地利用上,使其损失最小,如果当前值最大的饼干满足不了当前胃口最大的孩子,那么就跳过这个孩子,因为没有能满足这个孩子的饼干了,继续向找胃口次小的孩子,依次查找,知道饼干用完或者所有的孩子都查询完毕。
class Solution {
public int findContentChildren(int[] g, int[] s) {
Arrays.sort(g);
Arrays.sort(s);
int i = g.length -1;
int j = s.length -1;
int ans = 0;
while(i >= 0 && j >= 0){
if(s[j] >= g[i]){
ans++;
i--;
j--;
}else{
i--;
}
}
return ans;
}
}